
20 April 2017

Tom Cuchta



Peano Arithmetic

1 (∀x)¬(0 = Sx)

2 (∀x)(∀y)(Sx = Sy → x = y)

3 (∀y)(y = 0 ∨ (∃x)(Sx = y))

4 (∀x)(x + 0 = x)

5 (∀x)(∀y)(x + Sy = S(x + y))

6 (∀x)(x · 0 = 0)

7 (∀x)(∀y)(x · Sy = (x · y) + x)

8 (Induction schema) For any predicate Px , the following is an
axiom:

(P(0) ∧ (∀x)(Px → P(Sx)))→ (∀y)(Py).

Tom Cuchta



Consistency and completeness

A theory is called consistent if it does not derive a contradiction.
A theory is called complete if every sentence (or its negation) has a
proof in that theory (i.e. nothing is “undecidable”).

Is Peano arithmetic consistent? Is it complete?

Tom Cuchta



Iteration – Fibonacci sequence

Most generally, the word recursion captures the idea of
self-reference and repetition.
Example: The Fibonacci sequence is often defined “iteratively”
(with a “recurrence relation”):

(∗) F (n + 1)
def
= F (n) + F (n − 1);F (0) = 1,F (1) = 1.

The numbers F (0) = 1 and F (1) = 1 are the “initial conditions”.
To find the value of F (2), simply plug in n = 1 into (∗) to arrive at:

F (2) = F (1) + F (0) = 1 + 1 = 2.

To find F (3) plug in n = 2 into (∗) to get

F (3) = F (2) + F (1) = 2 + 1 = 3.

etc...
F (4) = F (3) + F (2) = 3 + 2 = 5.

Tom Cuchta



Recursion – Factorial

The factorial function is n! = n(n − 1)(n − 2) . . . (2)(1). For
example,

4! = 4 · 3 · 2 · 1 = 24.

It can also be defined recursively (we write fac for simplicity):

fac(n + 1) = (n + 1) · fac(n); fac(1) = 1.

This definition shows that

fac(2) = fac(1 + 1) =

Tom Cuchta



Recursion – Ackermann function

The Ackermann Ack function is defined by

Ack(x , y) =


y + 1 ; x = 0
Ack(x − 1, 1) ; y = 0
Ack(x − 1,Ack(x , y − 1)) ; otherwise.

Calculate...
Ack(0, 0)

x=0,y=0
= 0 + 1 = 1,

Ack(0, 1)
x=0,y=1

= 1 + 1 = 2,

...

Arc(0, y)
x=0,y=y

= y + 1,

Ack(1, 0)
x=1,y=0

= Ack(1− 1, 1) = Ack(0, 1) = 2

This function gets very large very fast...

Ack(4, 3) = 22
65536 − 3 = 22

22
22

− 3

Tom Cuchta



Recursion – Ackermann function

The Ackermann Ack function is defined by

Ack(x , y) =


y + 1 ; x = 0
Ack(x − 1, 1) ; y = 0
Ack(x − 1,Ack(x , y − 1)) ; otherwise.

Calculate...
Ack(0, 0)

x=0,y=0
= 0 + 1 = 1,

Ack(0, 1)
x=0,y=1

= 1 + 1 = 2,

...

Arc(0, y)
x=0,y=y

= y + 1,

Ack(1, 0)
x=1,y=0

= Ack(1− 1, 1) = Ack(0, 1) = 2

This function gets very large very fast...

Ack(4, 3) = 22
65536 − 3 = 22

22
22

− 3

Tom Cuchta



Primitive recursive functions

A primitive recursive function is a special type of recursively
defined function. Their technical definition is too complicated for
here, but the factorial function defined earlier is primitive recursive
while the Ackermann function is not.

Theorem: Any primitive recursive function can be defined in
Peano arithmetic.

Tom Cuchta



Gödel numbers

The Gödel number of a formula in a language is a number
assigned, uniquely, to each formula in that language. We do this
by associating each symbol in a formula to a number.

Our assignment for Peano arithmetic:
0↔ 1
· ↔ 2
+↔ 3
=↔ 4
(↔ 5
)↔ 6
S0↔ 7
SS0↔ 8
SSS0↔ 9
...

Tom Cuchta



Gödel numbers

Let’s assign a Gödel number to the following formula of Peano
arithmetic:

S0 · S0 = S0.

Since S0↔ 7, · ↔ 2, =↔ 4, we will encode the formula as an
integer in the following way: consider the prime numbers
{2, 3, 5, 7, 11, 13, 17, 19, 23, . . .}; use the assigned value of each
symbol as the exponent of each prime, in order, for each symbol

S0·S0=S0↔ 27325774117 = 4210982781390000000

Since we are using primes, this process can also be reversed: what
formula is encoded by the number 152127360?

152127360
factor

= 27325174111 ↔ S0 · 0 = 0

Tom Cuchta



Super Gödel numbers

The process described earlier can be applied to any sequence of
integers.

Once we have Gödel numbers of formulas, we can talk about
“super” Gödel numbers, which is the same process applied to
proofs of formulas: a proof of a theorem is a list of formulas (in our
deduction!). Each formula in the proof has its own Gödel number.

We say the “super Gödel” number of a proof defined by a
sequence of formulas whose Gödel numbers are {g1, g2, . . . , gn} to
be the number 2g13g25g37g411g513g

6
. . ..

Tom Cuchta



“Super” Gödel numbers

From HW10:
Formula in proof Gödel number

(1) S0 · S0 = (S0 · 0) + S0 g1 = 27325774115137172191236293317

(2) S0 · 0 = 0 g2 = 2732517411131

(3) S0 · S0 = 0 + S0 g3 = 27325774111137

(4) S0 + 0 = 0 + S0 g4 = 27335174111133177

(5) S0 + 0 = S0 g5 = 27335174117

(6) S0 = 0 + S0 g6 = 27345173117

(7) S0 · S0 = S0 g7 = 27325774117

The super Gödel number of this proof of the formula
φ = S0 · S0 = S0 is

pφq = 2g13g25g37g411g513g617g7

Tom Cuchta



Proof function

The Prf function Prf(m, n) returns “True” provided that m is the
super Gödel number of a proof of the formula whose Gödel number
is n. It returns “False” otherwise.

All that is required to check whether Prf(m, n) is true or false is to
decode the number m into a proof and decode n into a formula.
Observe whether or not the proof is a proof of n.

Theorem: Prf is primitive recursive.

Tom Cuchta



Diagonalization and G

If φ is a formula, then the diagonalization of φ is the formula

diag(φ) = (∃y)(y = pφq ∧ φ).

We define Gdl(m, n) = Prf(m,diag(n)); this is true whenever m is
the super Gödel number of a proof of the diagonalization of the
formula whose Gödel number is n.

The self-reference: define the formula Uy = (∀x)¬Gdl(x , y).
The diagonalization of this formula is the formula we call G :

G
def
= diag(Uy) = (∃y)(y = pUyq ∧ Uy).

Tom Cuchta



What does G say?

G
def
= (∃y)(y = pUyq ∧ Uy)

1 G =(∃y)(y = pUyq ∧ Uy)

2 G =There is y such that y = super Gödel number of a proof
of the formula “Uy” and Uy

3 G =There is y such that y = super Gödel number of a proof
of “(∀x)¬Gdl(x , y)” and (∀x)¬Gdl(x , y)

4 G =There is y such that y = super Gödel number of a proof
of “(∀x)¬Gdl(x , y)” and no (natural) number x exists such
that x is the super Gödel number of a proof of
(∃y)(y = pUyq ∧ Uy)

Notice: the formula in line 1 appeared again inside of line 4...

Tom Cuchta



Peano arithmetic does not prove G

Proof sketch: Suppose a proof exists for the formula G . From
this we see that G is true, and moreover the proof has a super
Gödel number, say, `.

But if G is true, it means there is a number y , whose value is the
Gödel number of the formula G , and no number x exists which is
the super Gödel number of a proof of G .

So simultaneously the number ` would exist while we would also
declare that no such number x = ` can exist. A contradiction!
Therefore by RAA... Peano arithmetic does not prove G !

Tom Cuchta



Is G true?

Depends... from the perspective of “true” meaning “there exists a
proof of it”, then no, it is not.

However, if you think about G as encoding “I am not provable”,
then because we have already argued that there is no proof for G ,
it is in fact true... (“metamathematically”).

From this we see that G “must be” true while also not having a
proof (to have a proof would contradict itself). This is precisely
why Peano arithmetic is not complete.

Tom Cuchta



The 2nd incompleteness theorem

Gödel’s first incompleteness theorem shows that Peano arithmetic
is not complete: G is true but not provable.

Natural idea: add G to the list of axioms. Now we have a
“stronger theory” in which G has a proof. Do this “as much as
necessary” to get a “sufficiently powerful” theory that is complete.

Gödel’s 2nd incompleteness theorem tells us that will always fail:
any theory that can “express” Peano suffers from its own G -like
sentence.

Tom Cuchta



Halting problem

Can you write down a general method (“algorithm”) that takes the
source code of a computer program as an input and returns 1 if
the inputted program “halts” (or “terminates” or “stops”) or
returns 0 if the inputted program runs into an “infinite loop”?

Sometimes... yes:
while (2>1)

{
print 1

}
never terminates, while
print "Hello world!"

terminates.

Tom Cuchta



Halting problem

Theorem: No algorithm exists that can decide whether a given
program will halt or not.
Proof sketch: Suppose such an algorithm exists, that is, suppose
there is a program Halt, which takes a program t as input, and has
output Halt(t) = 1 if the program t terminates and Halt(t) = 0 if
the program t does not terminate.

Define a program as follows: the program y(t) takes an input
program t and asks “does t terminate or not?”. If Halt(1) = 1,
then y decides to run an infinite loop. If Halt(t) = 0, then y
decides to terminate.

What happens if we feed the program y into itself? Does y(y)
terminate? If it does, then it doesn’t. If it doesn’t, then it does...
therefore the Halt program does not exist!

Tom Cuchta


