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PREFACE

This book has been written primarily to serve as a textbook for a first
course in modern logic. No background in mathematics or philosophy is
supposed. My main objective has been to familiarize the reader with
an exact and complete theory of logical inference and to show how it
may be used in mathematics and the empirical sciences. Since several
books already available have aims closely related to the one just stated,
it may be well to mention the major distinguishing features of the present
book.

Part 1 (the first eight chapters) deals with formal principles of infer-
ence and definition. Beginning with the theory of sentential inference in
Chapter 2 there is continual emphasis on application of the method of
interpretation to prove arguments invalid, premises consistent, or axioms
of a theory independent. There is a detailed attempt (Chapter 7) to
relate the formal theory of inference to the standard informal proofs
common throughout mathematics. The theory of definition is presented
(Chapter 8) in more detail than in any other textbook known to the
author; a discussion of the method of Padoa for proving the independence
of primitive concepts is included.

Part I (the last four chapters) is devoted to elementary intuitive set
theory, with separate chapters on sets, relations, and functions. The
treatment of ordering relations in Chapter 10 is rather extensive. Part
II is nearly self-contained and can be read independently of Part I. The
last chapter (Chapter 12) is concerned with the set-theoretical founda-
tions of the axiomatic method. The idea that the best way to axiomatize
a branch of mathematics is to define appropriate set-theoretical predicates
is familiar to modern mathematicians and certainly does not originate
with the author, but the exposition of this idea, which provides a sharp
logical foundation for the axiomatic method, has been omitted from the
excellent elementary textbooks on modern mathematics which have ap-
peared in recent years.

Beginning with Chapter 4, numerous examples of axiomatically formu-
lated theories are introduced in the discussion and exercises. - These ex-
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amples range from the theory of groups and the algebra of the real
numbers to elementary probability theory, classical particle mechanics
and the theory of measurement of sensation intensities. (The section on
mechanics is the one exception to the general statement that there are
no mathematical prerequisites for the reading of this book; some knowl-
edge of the differential and integral caleulus is required for the full under-
standing of this section, the final one in the book.) Certain of the ex-
ercises included in connection with these substantive examples are more
difficult than those ordinarily put in an elementary logic text. The pur-
pose of these exercises is to challenge the ablest students. There is,
however, a very large number of additional exercises of relatively simple
character which adequately illustrate all the general principles intro-
duced. It is hoped that the material on measurement, probability, and
mechanics in Chapter 12 may be useful in some Philosophy of Science
courses.

The system of inference for first-order predicate logic developed in
Chapters 2, 4, and 5 has been designed to correspond as closely as pos-
sible to the author’s conception of the most natural techniques of informal
proof. Probably the most novel feature of the system is the method of
handling existential quantifiers by the use of “ambiguous names”; the
central idea of this approach is related to Hilbert’s ¢ symbol. Since
many teachers of logic have their own preferred rules for handling infer-
ences with quantifiers, it should be mentioned that the particular rules
introduced here play a major role only in Chapters 4 and 5.

Numerous people have contributed to the gradual development of this
book. I am particularly indebted to Professor Robert McNaughton for
many useful criticisms and suggestions, based on his teaching experience
with earlier drafts; to Professor Herman Rubin who contributed to the
formulation of the system of natural deduction presented in Chapters 2
and 4; and to Mr. Dana Scott for many helpful suggestions concerning
Chapters 8 and 12. I am also indebted to Professor Moffatt Hancock
of the Stanford Law School for several exercises in Chapters 2 and 4.
Various teaching assistants at Stanford have aided in the preparation
of exercises and made numerous useful criticisms—notably Mr. Leonard
Leving, Mrs. Muriel Wood Gerlach and Mrs. Rina Ullmann.

The last set of revisions has benefited from the comments and criti-
cisms of Professors Ernest Adams, Herman Chernoff, Benson Mates, John
Myhill, David Nivison, Hartley Rogers, Jr., Leo Simons, Robert Vaught,
and Mr. Richard Robinson. The extraordinarily detailed and perspica-
cious criticisms of Professor Vaught were especially valuable. Miss
Peggy Reis and Mrs. Karol Valpreda Walsh have been of much assistance
in reading proofs. In addition, Miss Reis has cheerfully and accurately



-

PREFACE I<

typed the several preliminary editions used in courses since the summer
of 1954.

This book is dedicated to the memory of Professor J. C. C. McKinsey.
A joint book with him was originally planned, but owing to his untimely
death in 1953 his competent handiwork is now little evident. He wrote
the original drafts of Chapters 9, 10, and 11, but these chapters have been
revised three times and the length of Chapters 10 and 11 has been more
than doubled. The other nine chapters are my sole responsibility in all
respects.

PATRICK SUPPES
Stanford, California
April, 1957
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INTRODUCTION

Our everyday use of language is vague, and our everyday level of think-
ing is often muddled. One of the main purposes of this book is to
introduce you to a way of thinking that encourages carefulness and
precision. There are many ways to learn how to use language and ideas
precisely. Our approach shall be through a study of logic. In modern
times logic has become a deep and broad subject. We shall initially
concentrate on that portion of it which is concerned with the theory of
correct reasoning, which is also called the theory of logical inference,
the theory of proof or the theory of deduction. The principles of logical
inference are universally applied in every branch of systematic knowl-
edge. It is often said that the most important critical test of any sci-
entific theory is its usefulness and accuracy in predicting phenomena
before the phenomena are observed. Any such prediction must involve
application of the principles of logical inference. For example, if we
know what forces are acting on a body and we know at a given time
where the body is and what its velocity is, we may use the theory of
mechanics together with the rules of logical inference and certain theo-
rems of mathematics to predict where the body will be at some later
time.

For over two thousand years mathematicians have been making correct
inferences of a systematic and intricate sort, and logicians and philoso-
phers have been analyzing the character of valid arguments. It is,
therefore, somewhat surprising that a fully adequate formal theory of
inference has been developed only in the last three or four decades. In
the long period extending from Aristotle in the fourth century B.c. to
Leibniz in the seventeenth century, much of importance and significance
was discovered about logic by ancient, medieval and post-medieval
logicians, but the most important defect in this classical tradition was
the failure to relate logic as the theory of inference to the kind of deduec-
tive reasonings that are continually used in mathematics.

Leibniz had some insight into the necessity of making this connection,
but not until the latter part of the nineteenth century and the beginning

xv



xvi INTRODUCTION

of this century were systematic relations between logic and mathemat-
ics established, primarily through the work of Frege, Peano, and Russell.
In spite of the scope and magnitude of their researches, only in recent
years has there been formulated a completely explicit theory of inference
adequate to deal with all the standard examples of deductive reasoning
in mathematics and the empirical sciences. The number of people who
have contributed to these recent developments is large, but perhaps most
prominent have been Kurt Godel, David Hilbert, and Alfred Tarski.

Yet it is a mistake to think that the theory of inference developed in
the first part of this book has relevance exclusively to scientific con-
texts. The theory applies just as well to proceedings in ecourts of law or
to philosophical analyses of the eternal verities. Indeed, it is not too
much to claim that the theory of inference is pertinent to every serious
human deliberation.

A correct piece of reasoning, whether in mathematics, physics or casual
conversation, is valid by virtue of its logical form. Because most argu-
ments are expressed in ordinary language with the addition of a few
technical symbols particular to the discipline at hand, the logical form
of the argument is not transparent. Fortunately, this logical structure
may be laid bare by isolating a small number of key words and phrases
like ‘and’, ‘not’, ‘every’ and ‘some’. In order to fix upon these central
expressions and to lay down explicit rules of inference depending on their
occurrence, one of our first steps shall be to introduce logical symbols
for them. With the aid of these symbols it is relatively easy to state and
apply rules of valid inference, a task which occupies the first seven
chapters.

To bring logical precision to our analysis of ideas, it is not ordinarily
enough to be able to construct valid inferences; it is also essential to have
some mastery of methods for defining in an exact way one concept in
terms of other concepts. In any given branch of science or mathematics
one of the most powerful methods for eliminating conceptual vagueness
is to isolate a small number of concepts basic to the subject at hand and
then to define the other concepts of the discipline in terms of the basic set.
The purpose of Chapter 8 is to lay down exact rules for giving such
definitions. Correct definitions like correct inferences will be shown to
depend primarily on matters of logical form. However, certain subtle
questions of existence arise in the theory of definition which have no
counterpart in the theory of inference.

The first eight chapters constitute Part I, which is devoted to general
principles of inference and definition. Part II, the last four chapters,
is concerned with elementary set theory. Because the several respects
in which set theory is intimately tied to logic will not be familiar to many
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readers, some explanation for the inclusion of this material will not be
amiss,

Set theory, or the general theory of classes as it is sometimes called, is
the basic discipline of mathematics, for with a few rare exceptions the
entities which are studied and analyzed in mathematics may be regarded
as certain particular sets or classes of objects. As we shall see, the ob-
jects studied in a branch of pure mathematics like the theory of groups
or in a branch of mathematical physics like the theory of mechanics may
be characterized as certain sets. For this reason any part of mathematics
may be called a special branch of set theory. However, since this usage
would identify set theory with the whole of mathematics it is customary
to reserve the term ‘set theory’ for the general theory of classes or sets
and certain topics, such as the construction of the integers and real num-
bers as sets, which are closely connected historically with investigations
into the foundations of mathematics.

The first chapter of Part II is concerned with an intuitive account
of the more important relationships among arbitrary sets. There are,
for example, simple operations on sets which correspond to the arith-
metical operations of addition, multiplication, and subtraction. The next
chapter (Chapter 10) deals with the theory of relations, which is brought
within set theory via the notion of an ordered couple of objects. Empha-
sis is given to ordering relations because of their importance in many
branches of mathematics and science. Chapter 11 deals with functions,
which from the standpoint of set theory are just relations having a special
property.

While the first three chapters of Part II are concerned with general
set theory, the final chapter (Chapter 12) turns to the relation between
set theory and certain methodological or foundational questions in
mathematics and philosophy. The central point of this chapter is to
indicate how any branch of mathematics or any scientific theory may be
axiomatized within set theory. The viewpoint which is expounded in
detail in Chapter 12 is that the best way to axiomatize a theory is to
define an appropriate predicate within set theory.

Since the beginning of this century philosophers have written a great
deal about the structure of scientific theories but they have said lamen-
tably little about the detailed structure of particular theories. The axio-
matization of a theory within set theory is an important initial step in
making its structure both exact and explicit. Once such an axiomatiza-
tion is provided it is then possible to ask the kind of “structure” questions
characteristic of modern mathematics. For instance, when are two
models of a theory isomorphic, that is, when do they have exactly the
same structure? Indeed, familiar philosophical problems like the reduc-
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tion of one branch of empirical science to another may be made precise
in terms of such set-theoretical notions as that of isomorphism. Applica-
tion of these ideas to substantive examples from pure mathematics and
the empirical sciences is given in Chapter 12.

The aim of both Parts I and II is to present logic as a part of mathe-
matics and science and to show by numerous detailed examples how
relevant logic is even to empirical sciences like psychology. For this
reason it may be said that the emphasis in this book is on the systematic
use and application of logic rather than on the development of logic as
an autonomous discipline.

Finally, it should be remarked that no precise definition of logic is at-
tempted in these pages. In the narrow sense, logic is the theory of valid
arguments or the theory of deductive inference. A slightly broader
sense includes the theory of definition. A still broader sense includes
the general theory of sets. Moreover, the theory of definition together
with the theory of sets provides an exact foundation for the axiomatic
method, the study of which is informally considered part of logic by
most mathematicians.
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PRINCIPLES OF INFERENCE AND DEFINITION







CHAPTER 1

THE SENTENTIAL CONNECTIVES

To begin with, we want to develop a vocabulary which is precise and at
the same time adequate for analysis of the problems and concepts of sys-
tematic knowledge. We must use vague language to create a precise lan-
guage. This is not as silly as it seems. The rules of chess, for example,
are a good deal more precise than those of English grammar, and yet we
use English sentences governed by imprecise rules to state the precise
rules of chess. In point of fact, our first step will be rather similar to draw-
ing up the rules of a game. We want to lay down careful rules of usage
for certain key words: ‘not’, ‘and’, ‘or’, ‘if ..., then ...’, ‘if and only if’,
which are called senlential connectives. The rules of usage will not, how-
ever, represent the rules of an arbitrary game. They are designed to make
explicit the predominant systematic usage of these words; this systematic
usage has itself arisen from reflection on the ways in which these words are
used in ordinary, everyday contexts. Yet we shall not hesitate to deviate
from ordinary usage whenever there are persuasive reasons for so doing.

§ 1.1 Negation and Conjunction. We deny the truth of a sentence
by asserting its negation. For example, if we think that the sentence
‘Sugar causes tooth decay’ is false, we assert the sentence ‘Sugar does not
cause tooth decay’. The usual method of asserting the negation of a simple
sentence is illustrated in this example: we attach the word ‘not’ to the
main verb of the sentence. However, the assertion of the negation of a
compound sentence is more complicated. For example, we deny the sen-
tence ‘Sugar causes tooth decay and whiskey causes ulcers’ by asserting
‘Tt is not the case that both sugar causes tooth decay and whiskey causes
ulcers’. In spite of the apparent divergence between these two examples,
it is convenient to adopt in logic & single sign for forming the negation of
s sentence. We shall use the prefix ‘~’, which is placed before the whole
sentence. Thus the negation of the first example is written:

—(Sugar causes tooth decay).
3
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The second example illustrates how we may always translate ‘~’; we may
always use ‘it is not the case that’.

The main reason for adopting the single sign -’ for negation, regardless
of whether the sentence being negated is simple or compound, is that the
meaning of the sign is the same in both cases. The negation of a true sen~
tence is false, and the negation of a false sentence ts true.

‘We use the word ‘and’ to conjoin two sentences to make a single sen-
tence which we call the conjunction of the two sentences. For example,
the sentence ‘Mary loves John and John loves Mary’ is the conjunction of
the sentence ‘Mary loves John’ and the sentence ‘John loves Mary’. We
shall use the ampersand sign ‘&’ for conjunction. Thus the conjunction of
any two sentences P and Q is written

P&Q.

The rule governing the use of the sign ‘&’ is in close accord with ordinary
usage. The conjunction of two sentences i3 true if and only if both sentences
are irue. We remark that in logic we may combine any two sentences to
form a conjunction. There is no requirement that the two sentences be
related in content or subject matter. Any combinations, however absurd,
are permitted. Of course, we are usually not interested in sentences like
‘John loves Mary, and 4 is divisible by 2’. Although it might seem de-
sirable to have an additional rule stating that we may only conjoin two
sentences which have a common subject matter, the undesirability of such
a rule becomes apparent once we reflect on the vagueness of the notion of
common subject matter.

Various words are used as approximate synonyms for ‘not’ and ‘and’ in
ordinary language. For example, the word ‘never’ in the sentence:

I will never surrender to your demands
has almost the same meaning as ‘not’ in:
I will not surrender to your demands.

Yet it is true that ‘never’ carries a sense of continuing refusal which ‘not’
does not.

The word ‘but’ has about the sense of ‘and’, and we symbolize it by ‘&’,
although in many cases of ordinary usage there are differences of meaning.
For example, if a young woman told & young man:

I love you and I love your brother almost as well,
he would probably react differently than if she had said:
I love you but I love your brother almost as well.



DISJUNCTION 5

In view of such differences in meaning, a natural suggestion is that dif-
ferent symbols be introduced for sentential connectives like ‘never’ and
‘but’. There is, however, a profound argument against such a course of
action. The rules of usage agreed upon for negation and conjunction
make these two sentential connectives iruth-funciional; that is, the truth
or falsity of the negation of a sentence P, or the truth or falsity of the con-
junetion of two sentences P and Q is a function just of the truth or falsity
of P in the case of negation, and of P and Q in the case of conjunction.
Clearly a truth-functional analysis of ‘but’ different from that given for
‘and’ is out of the question, but any venture into non-truth-functional
analysis leads to considerations which are vague and obscure. Any doubt
about this is quickly dispelled by the attempt to state a precise rule of
usage for ‘but’ which differs from that already given for ‘and’.

Of course, the rich, variegated character of English or any other natural
language guarantees that in many contexts connectives are used in deli-
cately shaded, non-truth-functional ways. Loss in subtlety of nuance
seems a necessary concomitant to developing a precise, symbolic analysis
of sentences. But this process of distorting abstraction is not peculiar to
logic; it is characteristic of science in general. Few poets would be inter-
ested in a truth-functional analysis of language, and no naturalist would
consider the physicist’s concepts of position, velocity, acceleration, mass,
and force adequate to describe the flight of an eagle. The concepts of
logic developed in this book are useful in discovering and communicating
systematic knowledge, but their relevance to other functions of language
and thought is less direct.

§ 1.2 Disjunction. We use the word ‘or’ to obtain the disjunction of
two sentences. In everyday language, the word ‘or’ is used in two distinet
senses. In the so-called non-exclusive sense, the disjunction of two sen-
tences is true if at least one of the sentences is true. In legal contracts
this sense is often expressed by the barbarism ‘and/or’, illustrated in the
following example:

Before any such work is done or any such materials are furnished, the Lessee

and any contractor or other person engaged to do such work and/or furnish
such materials shall furnish such bond or bonds as the Lessor may reasonably

require . .

We remark that in the above example there are no disjunctions of sen-
tences, but disjunctions of clauses or terms which are not sentences. We
shall find, however, that it is more convenient to treat such examples as
disjunctions of sentences; this viewpoint reflects another divergence be-
tween logic and everyday language.

The Latin word ‘vel’ has approximately the sense of ‘or’ in the non-
exclusive sense, and consequently we use the sign ‘v’ for the disjunction
of two sentences in this sense. Thus the disjunction of any two sentences
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P and Q is written

PvaQ.

We shall restrict our use of the word ‘disjunction’ to the non-exclusive
sense, and our rule of usage is: The disjunction of two sentences is true if and
only if af least one of the sentences is true.

When people use ‘or’ in the exclusive sense to combine two sentences,
they are asserting that one of the sentences is true and the other is false.
This usage is often made more explicit by adding the phrase ‘but not
both’. Thus a father tells his child, “You may go to the movies or you
may go to the circus this Saturday but not both’. We shall introduce no
special sign for ‘or’ in the exclusive sense, for it turns out that in scientific
discussions we can always get along with ‘or’ in the non-exclusive sense
(which is also called the inclusive sense).

§ 1.3 Implication: Conditional Sentences. We use the words ‘if .. .,
then ...’ to obtain from two sentences a conditional sentence. A condi-
tional sentence is also called an tmplicaiion. As words are used in every-
day language, it is difficult to characterize the circumstances under which
most people will accept a conditional sentence as true. Consider an exam-
ple similar to one we have already used:

(¢))] If Mary loves John, then John loves Mary.

If the sentence ‘Mary loves John’ is true and the sentence ‘John loves
Mary’ is false, then everyone would agree that (1) is false. Furthermore,
if the sentence ‘Mary loves John’ is true and the sentence ‘John loves
Mary’ is also true, then nearly everyone would agree that (1) is true. The
two possibilities of truth and falsity which we have just stated are the only
ones that arise very often in the ordinary use of language. There are,
however, two further possibilities, and if we ask the proverbial man in the
street about them, there is no telling what his reply will be. These two
further cases are the following. Suppose that the sentence ‘Mary loves
John’ is false, then what do we say about the truth of (1): first, when the
sentence ‘John loves Mary’ is also false; and second, when the sentence
‘John loves Mary’ is true? In mathematics and logic, this question is
answered in the following way: sentence (1) is true if the sentence ‘Mary
loves John’ is false, regardless of the truth or falsity of the sentence ‘John
loves Mary’.

To state our rule of usage for 4if ..., then ...’, it is convenient to use
the terminology that the sentence immediately following ‘if’ is the ante-
cedent or hypothesis of the conditional sentence, and the sentence immedi-
ately following ‘then’ is the consequent or conclusion. Thus ‘Mary loves
John’ is the antecedent of (1), and ‘John loves Mary’ is the consequent.
The rule of usage is then: A conditional sentence is false if the antecedent is
true and the consequent is false; otherwise st is irue.



IMPLICATION: CONDITIONAL SENTENCES 7

Intuitive objections to this rule could be made on two counts. First, it
can be maintained that implication is not a truth-functional connective,
but that there should be some sort of definite connection between the ante-
cedent and the consequent of a conditional sentence. According to the
rule of usage just stated, the sentence:

@) If poetry is for the young, then 3 4+ 8 = 11

is true, since the consequent is true. Yet many people would want to dis-
miss such a sentence as nonsensical; they would claim that the truth of
the consequent in no way depends on the truth of the antecedent, and
therefore (2) is not a meaningful implication. However, the logician’s com-
mitment to truth-functional connectives is not without its reasons. How
is one to characterize such an obscure notion as that of dependence? This
is the same problem we encountered in considering conjunctions. If you
think an important, perhaps crueial problem is being dodged simply on the
grounds that it is difficult, assurances will be forthcoming in the next chap-
ter that truth-functional connectives are very adequate for both the theory
and practice of logical inference.

Even if truth-functional commitments are accepted, a second objection
to the rule of usage for implication is that the wrong stipulation has been
made in calling any implication true when its antecedent is false. But
particular examples argue strongly for our rule. For the case when the
consequent is also false, consider:

3) If there are approximately one hundred million husbands in the
United States, then there are approximately one hundred million
wives in the United States.

It is hard to imagine anyone denying the truth of (3). For the case when
the consequent is true, consider the following modification of (3):

) If there are approximately one hundred million husbands in the
United States, then the number of husbands in this country is
greater than the number in France.

If (3) and (4) are admitted as true, then the truth-functional rule for con-
ditional sentences with false antecedents is fixed.

It might be objected that by choosing slightly different examples a case
could be made for considering any implication false when its antecedent is
false. For instance, suppose that (3) were replaced by:

®) If there are approximately one hundred million husbands in the
United States, then there is exactly one wife in the United States.

Then within our truth-functional framework it might be maintained that
an implication with false antecedent and false consequent is false, since it
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may be plausibly argued that in ordinary usage (5) is false. However,
there are good grounds for choosing (3) rather than (5), for (3) has the
property that its consequent follows from its antecedent on the basis of
some familiar principles of arithmetic and marriage. With respect to (5)
no such intuitive line of reasoning seems possible; in fact, it is the very
absence of such a connection which makes us declare it false. Although
we have already admitted that the notion of connection or dependence
being appealed to here is too vague to be a formal concept of logic, in
choosing examples which will force upon us, within our truth-functional
framework, a truth value for implications with false antecedents it is rea-
sonable to pick an example like (3) for which our intuitive feeling of de-
pendence is strong rather than an example like (5) for which it is weak.
The truth-functional demand that sentences like (5) be counted as true
has no undesirable effects, since conditional sentences whose antecedents
and consequents are unrelated and whose antecedents are false play no
serious role in systematic arguments.

As a matter of notation, the conditional sentence formed from any two
sentences P and Q is written

P - Q.

The sign ‘-’ is often called the sign of tmplication. Several other idioms
in English have approximately the same systematic meaning as if ...,
then ...”. We shall also write P — Q, for

P only if Q

Qif P

Q provided that P

P is a sufficient condition for Q
Q i8 & necessary condition for P

Of these five idioms, variant use of ‘only if’ is most pronounced. It is a
common “mistake’ to use ‘only if’ in the sense of ‘if’. For example, the
sentence:

6) John dates Mary only if Elizabeth is mad at him
would not ordinarily be taken to mean:
If John dates Mary then Elizabeth is mad at him,

and it would be more accurate (but still not exactly idiomatically correct)
to translate (6) as:

If Elizabeth is mad at him then John dates Mary.
The prevalence of sentences like (6) makes it difficult for many people first
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learning logic or mathematics to accept the stipulation that
7 P only if Q

means the same as
€] If P then Q.

Yet it is the case that in scientific discourse (7) and (8) are idiomatically
equivalent and they will be treated as such throughout the rest of this
book.
Concerning the last two idioms it is worth noting that they are widely
used in mathematics. Thus the sentence ‘If a triangle is equilateral then
it is isosceles’ may be rephrased:
In order for a triangle to be isosceles it is sufficient that it be
equilateral

or:
It is necessary that an equilateral triangle be isosceles.

Notice that some grammatical changes in the component sentences P and
Q are appropriate when we go from

If P then Q
to

9) P is a sufficient condition for Q

so that (9) is not an exact formulation; but these changes are usually obvi-
ous and need not be pursued here.

§ 1.4 Equivalence: Biconditional Sentences. We use the words ‘if
and only if’ to obtain from two sentences a biconditional sentence. A bi-
conditional sentence is also called an equivalence, and the two sentences
connected by ‘if and only if’ are called the left and right members of the
equivalence. The biconditional

(1) P if and only if Q

has the same meaning as the sentence
@ Pif Q, and P only if Q@

and (2) is equivalent to
(8) If P then Q, and if Q then P.

Qur rules of usage for conjunction and implication tell us that (3) is true
just when P and Q are both true or both false. Thus the rule: A bicondi-
tional sentence 8 true if and only if its two members are either both true or
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both false. As a matter of notation, we write
Peo Q@

for the biconditional formed from sentences P and Q.
Corresponding to our remarks at the end of the last section it should be
noted that (1) is equivalent to

Q is & necessary and sufficient condition for P.

$§ 1.5 Grouping and Parentheses. In ordinary language the proper
grouping of sentences which are combined into a compound sentence is in-
dicated by a variety of linguistic devices. When symbolizing such sen-
tences in logic, these devices may all be accurately translated by an ap-
propriate use of parentheses.

For instance, the sentence:

If Showboat wins the race, then Shotless and Ursula will show
is symbolized by
(¢))] S — (H&U),

where S is ‘Showboat wins the race’, H is ‘Shotless will show’, and U is
‘Ursula will show’. We read (1)

If S then H and U.
On the other hand, we read
@ S—H&U
a8
Both if S then H, and U.

It should thus be clear why (1) rather than (2) is the correct symboliza-
tion of the original sentence. The parentheses are used in a natural way,
familiar from elementary algebra, to indicate which connective is dominant.

By adopting one natural convention concerning the relative dominance
of the various connectives, a considerable reduction in the number of paren~
theses used in practice will be effected. The convention is ‘>’ and *—’
dominate ‘&’ and ‘v’. Thus (1) may be written

® S > H&U,
and
Pe Q&R
mesns

P o (Q&R):
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On the other hand, under this convention it is not clear what
P&QVR
is supposed to mean, and similarly for
P Q—R

§1.6 Truth Tables and Tautologies. Our truth-functional rules of
usage for negation, conjunction, disjunction, implication and equivalence
may be summarized in tabular form. These basic truth tables tell us at a
glance under what circumstances the negation of a sentence is true if we
know the truth or falsity of the sentence, similarly for the conjunction of
two sentences, and the disjunction or implication of two sentences as well.

Negation Conjunction Digjunction
P ' -p P QlP&Q P QlPvQ
T F T T T T T T
F T T F F T F T
FT F F T T
F F F F F F
Implication Equivalence
P Q@ lP—>Q P Q |[PoQ
T T T T T T
T F F T F F
F T T FT F
F F T F F T

We may think of using the basic truth tables in the following manner. If
N is the true sentence ‘Newton was born in 1642’ and G is the false sen-
tence ‘Galileo died in 1640’, then we may compute the truth or falsity of
& complicated compound sentence such as

1 (NVG)&-N) - (G — N).

Since N is true, we see from the disjunction table that N v G is true, from
the negation table that ~N is false, and hence from the conjunction table
that the antecedent of (1) is false. Finally, from the implication table we
conclude that the whole sentence is true. A more explicit application of
the truth tables in & manner analogous to the use of a multiplication table
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is illustrated by the following diagrammatic analysis, which is self-explana-

tory.
(NVG) & N)>(G—N)

T T * T
\Tf F’/ T/
N———

(Note that in this diagram the analysis proceeds from the inside out. The
final loop connects the two members of the major connective.)

Let us call a sentence atomic if it contains no sentential connectives.
Thus the sentence:

Mr. Knightley loved Emma
is atomiec, while the sentences:

Emma did not love Frank Churchill
and
Mrs. Elton was a snob and Miss Bates a bore

are not atomie, for the first contains a negation and the second a con-
junction.

We now use the concept of a sentence being atomic to define what is
probably the most important notion of this chapter. The intuitive ides is
that a compound sentence is a faufology if it is true independently of the
truth values of its component atomic sentences. For instance for any
atomic sentence P

Pv-~-P

is a tautology. If P is true, we have:
Pv-P

If P is false, we have:
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Thus whether P is true or false, P v -P is true and hence a tautology.
Derived truth tables are more convenient and compact than the diagram-
matic analysis shown above when we want to know if a sentence is a
tautology.

P|—PIPV—P
T’FI T
F| T T

The second column is obtained from the first by using the negation table,
and the third column from the first two by using the disjunction table.
Since both lines in the final column have the entry “I’, the whole sentence
is a tautology. The idea of the derived truth table is that a sentence is a
tautology if it is true for all combinations of possible truth values of its
component atomic sentences. The number of such combinations depends
on the number of component atomic sentences. Thus, if there are three
distinct atomic sentences, there are eight distinct combinations of possible
truth values, since each atomic sentence has exactly two possible truth
values: truth and falsity. In general, if there are n component atomic
sentences, there are 2" combinations of possible truth values, which means
that the derived truth table for a compound sentence having n distinet
atomic sentences has 2" lines. For instance, to show that PV Q — P is
not a tautology when P and Q are distinct atomic sentences, we need 22 = 4
lines, as in the following truth table.

P | Q vaQvaQ——»P

R R ]
e
iR
=

In this table the third column is obtained from the first two by using the
disjunction table, and the final column from the third and first by using
the implication table. Since the third row of the fourth column has the
entry ‘F’ for false, we conclude that P v Q — P is not a tautology, for
this third row shows that if P is false and Q true, then P v Q@ — P is false.
It should be emphasized that a sentence is a tautology if and only if every
entry in the final column is “T” (for true). The letter ‘F’ in a single row
of the final column is sufficient to guarantee that the sentence being ana-
lyzed is not a tautology.




































































































































































































































































































































































































































































































































































































































































































































































































































































































































