--| home
| research
| txt
| code
| teach
| specialfunctionswiki
| timescalewiki
| hyperspacewiki
| links |--
Syllabus: [pdf] [tex]

Honors syllabus: [pdf] [tex]

__Exams__

**Exam 1**:

**Exam 2**:

**Exam 3**:

**Exam 4**:

__Homework__

**Homework 1** (*due 22 January*) (honors homework: [pdf] [tex]): Section 1.1: #4, 6, 8, 11; Section 1.2: #70, 72, 76, 77, 88, 90, 92, 98, 100, 102, and the following problems:

*Problem A*: Compute the average value of the function over the given interval from problems #76 and #77.

*Problem B*: Use the method in the video to estimate $\displaystyle\int_0^{5} e^{-x^2} \mathrm{d}x$ with a rectangle width of $\Delta x = 0.01$. Compare this value to the actual value found from WolframAlpha.

*Problem C*: Use the method in the video to estimate $\displaystyle\int_0^{5} \sin(t^2) \mathrm{d}t$ with a rectangle width of $\Delta x = 0.01$. Compare this value to the actual value found from WolframAlpha.

**Homework 2** (*due 28 January*):

__Quizzes__

__Notes__

__External links__