
Riemann integral

Definition: Let f : [a, b]→ R. Let P,T be a partition pair. The Riemann
sum R(f ,P,T ) is given by

R(f ,P,T ) =
n∑

k=0

f (ti )∆xi .

Definition: We say f is Riemann-integrable with integral I if
∀ε > 0∃δ > 0 such that if P and T are any partition pair and meshP < δ,
then |R(f ,P,T )− I | < ε.
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Riemann integral theorems

Theorem: If f is Riemann integrable, then f is bounded.

Theorem:

∫ b

a
αf (x) + βg(x)dx = α

∫ b

a
f (x)dx + β

∫ b

a
g(x)dx

Theorem: If for all x , f (x) ≤ g(x), then

∫ b

a
f (x)dx ≤

∫ b

a
f (x)dx

Corollary: If for all x , |f (x)| ≤ M, then

∣∣∣∣∫ b

a
f (x)dx

∣∣∣∣ ≤ M(b − a).
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Darboux integral

Definition: Let f : [a, b]→ [−M,M] and let
P = {x1 = a < x2 < . . . < xn = b} be a partition of [a, b]. The lower sum
of f is

L(f ,P) =
n∑

i=1

mi∆xi ,

where mi := inf{f (t) : xi−1 ≤ t ≤ xi}.
Definition: The upper sum of f is

U(f ,P) =
n∑

i=1

Mi∆xi ,

where Mi := sup{f (t) : xi−1 ≤ t ≤ xi}.
“Clearly”:

L(f ,P) ≤ R(f ,P,T ) ≤ U(f ,P).
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Darboux integral

Definition: The lower integral of f over [a, b] is I := supP L(f ,P) and the
upper integral of f over [a, b] is U := infP U(f ,P).
Criterion: If I = I , then we say that f is Darboux-integrable over [a, b]
and we call this common value I .
Definition: A partition P ′ of [a, b] is a refinement of another partition P
of [a, b] if P ⊂ P ′.
Refinement principle: Refining a partition causes the lower sum to
increase and the upper sum to decrease.
Definition: The common refinement of two partitions P and P ′ is the
partition P∗ = P ∪ P ′.
Corollary to refinement principle:

L(f ,P) ≤ L(f ,P∗) ≤ U(f ,P∗) ≤ U(f ,P ′).

Consequence: A bounded function f : [a, b]→ R is Darboux integrable iff
∀ε > 0∃P such that U(f ,P)− L(f ,P) < ε.
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Riemann integral vs Darboux integral

Theorem: Riemann integrability and Darboux integrability are equivalent,
i.e. functions are Riemann integrable iff they are Darboux integrable and
the values of these integrals are the same.
Proof: (←) Assume f is Darboux integrable, i.e. I = I = I . Let ε > 0.
Our goal: find a δ > 0 so that if P, T is a partition pair with
mesh(P) < δ, then |R(f ,P,T )− I | < ε. Since f Darboux integrable,

there is a partition P1 of [a, b] so that U(f ,P1)− L(f ,P1) <
ε

2
. Let

δ =
ε

8Mn1
, where n1 is the number of points in P1. Let P be any partition

with meshP < δ. Let P∗ = P ∪ P1 be the their common refinement. By
refinement principle,

L(f ,P1) ≤ L(f ,P∗) ≤ U(f ,P∗) ≤ U(f ,P1).

Subtract L(f ,P1) to get

0 ≤ L(f ,P∗)− L(f ,P1) ≤ U(f ,P∗)− L(f ,P1) ≤ U(f ,P1)− L(f ,P1)︸ ︷︷ ︸
know < ε

2

.
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Riemann integral vs Darboux integral

We know that L(f ,P1) ≤ L(f ,P∗), so −L(f ,P1) ≥ −L(f ,P∗), hence

U(f ,P∗)− L(f ,P∗) ≤ U(f ,P∗)− L(f ,P1)≤ U(f ,P1)− L(f ,P1)︸ ︷︷ ︸
previous slide

<
ε

2
.

Write P = {x1, . . . , xn} and P∗ = {x∗1 , . . . , x∗n∗}. The sums

U =
∑

Mi∆xi and U∗ =
∑

M∗j ∆x∗j are identical except for terms where

xi−1 < x∗j < xi for some i and j . There are at most n1 − 2 of these terms,
and each is of magnitude Mδ. Thus,

U − U∗ < (n1 − 2)2Mδ <
ε

4
.

Similarly, L− L∗ <
ε

4
. Thus

U − L = (U − U∗) + (U∗ − L∗) + (L∗ − L) <
ε

4
+
ε

4
+
ε

2
= ε.

Since I ,R(f ,P,T ) ∈ [L,U], we observe that |R − I | < ε. Hence f is
Riemann integrable.
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Riemann integral vs Darboux integral

(→) Suppose that f is Riemann integrable with integral I . By Theorem,
we know that f is bounded. Let ε > 0. There exists δ > 0 such that for
any partition pair P,T with meshP < δ, it follows that

|R(f ,P,T )− I | < ε

4
. Fix any such P. Now pick the T : choose T = {ti}

and T ′ = {t ′i} such that each f (ti ) is so close to mi and each f (t ′i ) is so

close to Mi that |R(f ,P,T )− L(f ,P)| < ε

4
and

|U(f ,P)− R(f ,P,T ′)| < ε

4
. Therefore

U(f ,P)− L(f ,P) = (U(f ,P)− R(f ,P,T ′)) + (R(f ,P,T ′)− I )

+ (I − R(f ,P,T )) + (R(f ,P,T )− L(f ,P)) < ε.

Since I , I , I ∈ [L(f ,P),U(f ,P)] whose length is less than an arbitrary ε,
the ε-principle shows

I = I = I ,

proving that f is Darboux-integrable. �
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Riemann Integrability Criterion

A bounded function is Riemann-integrable if and only if ∀ε > 0∃P such
that U(f ,P)− L(f ,P) < ε.

Example: Every continuous f : [a, b]→ R is integrable.
Example: A piecewise-continuous function is one which is continuous
except at finitely many points. Bounded piecewise-continuous functions
are Riemann-integrable.

Are there bounded functions which are not Riemann-integrable?
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A bounded non-Riemann-integrable function

Let E ⊂ R and define the characteristic function (or “indicator function”)
χE : R→ {0, 1} defined by

χE (t) =

{
1, x ∈ E
0, x ∈ R \ E .

Example: χQ is not Riemann-integrable on [0, 1]. Why? For any partition
P, L(χQ,P) = 0 (mi always zero!) and U(χQ,P) = 1 (Mi always one!).
So by the Riemann integrability criterion, the function is not
Riemann-integrable!

A function with “too many” disctoninuities fails to be Riemann integrable.
Can we make this more precise?
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Infinitely many discontinuities yet still Riemann integrable

Fact of R: between any two rational numbers is an irrational number and
between any two irrational numbers is a rational number
Example: The Thomae function (aka “rational ruler function”...strangely
enough it has found use in DNA sequencing) f : R→ Q is defined by

f (x) =


1

q
, x =

p

q
is rational

0, x is irrational.
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Infinitely many discontinuities yet still Riemann integrable

26 March 2018 11 / 18



Zero sets

A set Z ⊂ R is called a zero set (or a “measure zero” set) provided that

∀ε > 0 there are (a1, b1), (a2, b2), . . . such that
∞∑
i=1

bi − ai ≤ ε. We think

of zero sets as “negligible”. If a property holds for all points except for
those in some zero set, then we say that that property holds “almost
everywhere”.
Theorem: (Riemann-Lebesgue Theorem) A function f : [a, b]→ R is
Riemann-integrable if and only if it is bounded and its set of
discontinuities is a zero set.
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Corollaries to Riemann-Lebesgue

Corollary: Every continuous function is Riemann-integrable.
Corollary: Every bounded piecewise-continuous function is
Riemann-integrable.
Corollary: Every monotone function is Riemann-integrable.
Corollary: The product of Riemann-integrable functions is
Riemann-integrable.
Corollary: The composition of Riemann-integrable functions is
Riemann-integrable.
Corollary: The absolute value of a Riemann-integrable function is
Riemann-integrable.
Corollary: If a < c < b and f : [a, b]→ R is Riemann-integrable, then∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx .

Corollary: If the Riemann integrable of a non-negative function f is zero,
then f equals zero almost everywhere.
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Fundamental theorem of calculus

Theorem: (Fundamental Theorem of Calculus) If f : [a, b]→ R is
Riemann-integrable, then its indefinite integral F : [a, b]→ R defined by

F (x) =

∫ x

a
f (t)dt is a continuous function of x . The derivative of F (x)

exists and equals f (x) at all points x for which f is continuous.
Proof: Since f is Riemann-integrable, it is bounded; say for all x ,
f (x) ≤ |M|. Calculuate

|F (y)− F (x)| =

∣∣∣∣∫ x

a
f (t)dt −

∫ y

a
f (t)dt

∣∣∣∣ =

∣∣∣∣∫ y

x
f (t)dt

∣∣∣∣︸ ︷︷ ︸
because

∫ x
a +

∫ y
x =

∫ y
a

≤ M|y − x |

Let ε > 0 and choose 0 < δ <
ε

M
. Then |y − x | < δ implies

|F (x)− F (y)| ≤ M|y − x | < ε. Hence F is continuous.
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Fundamental theorem of calculus

Claim: If f is continuous at x , then

F (x + h)− F (x)

h
=

1

h

∫ x+h

x
f (t)dt −→︸︷︷︸

h→0

f (x).

Proof of claim: If

m(x , h) = inf{f (s) : |s − x | ≤ |h|}
and

M(x , h) = sup{f (s) : |s − x | ≤ |h|},
then using the fact that when x and h are fixed that m(x , h) and M(x , h)
are constant,

m(x , h) =
1

h

∫ x+h

x
m(x , h)dt

≤ 1

h

∫ x+h

x
f (t)dt ≤ 1

h

∫ x+h

x
M(x , h)dt = M(x , h).

We have m(x , h)→ f (x) and M(x , h)→ f (x) as h→ 0. �
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Corollaries to Fundamental Theorem

Corollary: The derivative of an indefinite Riemann integral exists almost
everywhere and equals the integrand almost everywhere.
Corollary: Every continuous function has an antiderivative.

26 March 2018 16 / 18



Antiderivative theorem

Theorem: (Antiderivative theorem) Any antiderivative of a
Riemann-integrable function, if it exists, differs from the indefinite integral
by a constant.
Proof: Assume that f : [a, b]→ R is Riemann-integrable and suppose that
G is an antiderivative of f (meaning G ′(x) = f (x)). The theorem claims
that there is a constant C so that

G (x) =

∫ x

a
f (t)dt + C .

Define a partition P of [a, x ] by a = x0 < x1 < . . . < xn = x . By the Mean
Value Theorem, we can pick tk ∈ [xk1 , xk ] (definine a T so P,T is a
partition pair) so that

G (xk)− G (xk−1) = G ′(tk)∆xk = f (x)∆xk .
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Antiderivative theorem

Telescoping sum:

G (x)− G (a)︸︷︷︸
=C

=
n∑

k=1

G (xk)− G (xk−1) =
n∑

k=1

f (tk)∆xk = R(f ,P,T ).

As the mesh of P goes to zero, the right-hand side becomes F (x),
completing the proof. �
Corollary: “Standard” integral formulas work as expected, i.e.∫ b

a
f ′(x)dx = f (b)− f (a).
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