Definition ("pointwise convergence"): Let $f_n: [a, b] \to \mathbb{R}$ be a sequence of functions. We say that f_n converges pointwise to f provided that $\forall x \in [a, b] \forall \epsilon > 0 \exists N \in \mathbb{N}$ so that for all $n \ge N, |f_n(x) - f(x)| < \epsilon$. For this, we write $f_n \to f$. **Definition** ("uniform convergence"): Let $f_n: [a, b] \to \mathbb{R}$ be a sequence of functions. We say that f_n converges uniformly to f provided that $\forall \epsilon > 0 \exists N \in \mathbb{N}$ so that for all $n \ge N$ and $x \in [a, b], |f_n(x) - f(x)| < \epsilon$. For this, we write $f_n \Rightarrow f$. **Theorem**: (Mean Value Theorem) Let $f : [a, b] \to \mathbb{R}$ be continuous and differentiable on (a, b). Then there exists $\theta \in (a, b)$ so that

$$\frac{f(b)-f(a)}{b-a}=f'(\theta).$$

Theorem: Suppose that $f_n: [a, b] \to \mathbb{R}$. Then $f_n \rightrightarrows f$ if and only if $\forall \epsilon > 0 \exists N \in \mathbb{N}$ such that for all $m, n \ge N$ and for all $x \in [a, b]$, $|f_n(x) - f_m(x)| < \epsilon$. **Theorem**: Suppose that $f_n: [a, b] \to \mathbb{R}$, that $f_n \rightrightarrows f$, let $x \in [a, b]$, and suppose that $\lim_{t \to x} f_n(t) = A_n$. Then A_n is a convergent sequence and

$$\lim_{t\to x}f(t)=\lim_{n\to\infty}A_n.$$

Let
$$f_n \colon \mathbb{R} \to \mathbb{R}$$
 with $f_n(x) = \frac{\sin(nx)}{\sqrt{n}}$.

- 1. Compute $\lim_{n\to\infty} f_n(x)$ (call this function $\mathcal{F}(x)$). Ans: $\mathcal{F}(x) = 0$
- 2. Is that convergence uniform? Ans: Yes!
- 3. Compute $\mathcal{F}'(x)$. Ans: 0
- 4. Compute $f'_n(x)$. Ans: $f'_n(x) = \sqrt{n} \cos(nx)$
- 5. Compute $\lim_{n\to\infty} f'_n(x)$. Ans: ∞ , $-\infty$, or undefined depending on the sign of $\cos(nx)$ For instance, if x = 0 you get $\lim_{n\to\infty} \sqrt{n} = \infty$. **Consequence**: Even the uniform limit of differentiable functions can fail to be differentiable!

Theorem: Suppose $f_n: [a, b] \to \mathbb{R}$ is a sequence of differentiable functions for which $f_n(x_0)$ converges. If f'_n converges uniformly on [a, b], then f_n converges uniformly on [a, b] to a function f and

$$f'(x) = \lim_{n \to \infty} f'_n(x).$$

Proof: Let $\epsilon > 0$. Since $f_n(x_0)$ converges, choose $N \in \mathbb{N}$ so that if $n, m \ge N$ implies

$$|f_n(x_0)-f_m(x_0)|<\frac{\epsilon}{2}.$$

Since f'_n converges uniformly, the *N* earlier can be chosen large enough so that for **all** $t \in [a, b]$,

$$|f_n'(t)-f_m'(t)|<\frac{\epsilon}{2(b-a)}.$$

Since f_n and f_m are differentiable, $f_n - f_m$ is differentiable. Let $x, t \in [a, b]$ be any two points (without loss of generality, assume t < x). By the mean value theorem applied to the function $g(x) = f_n(x) - f_m(x)$, there exists $\theta \in [a, b]$ so that

$$\frac{g(x)-g(t)}{x-t}=g'(\theta),$$

in other words and taking absolute value,

$$\frac{|(f_n(x) - f_m(x)) - (f_n(t) - f_m(t))|}{|x - t|} = |f'_n(\theta) - f'_m(\theta)|$$

So we have: for **all**
$$t \in [a,b], \ |f_n'(t)-f_m'(t)| < rac{\epsilon}{2(b-a)}$$
 and

$$|(f_n(x) - f_m(x)) - (f_n(t) - f_m(t))| = |x - t||f'_n(\theta) - f'_m(\theta)| < \frac{|x - t|\epsilon}{2(b - a)} < \frac{\epsilon}{2}.$$

Compute (how?)

$$|f_n(x) - f_m(x)| \le |f_n(x) - f_m(x) - f_n(x_0) + f_m(x_0)| + |f_n(x_0) - f_m(x_0)|.$$

We have

Т

$$|f_n(x_0) - f_m(x_0)| < \frac{\epsilon}{2},$$

and for all $x, t \in [a, b]$, $|(f_n(x) - f_m(x)) - (f_n(t) - f_m(t))| < \frac{\epsilon}{2}$ and
 $|f_n(x) - f_m(x)| \le |f_n(x) - f_m(x) - f_n(x_0) + f_m(x_0)| + |f_n(x_0) - f_m(x_0)| < \frac{\epsilon}{2}.$
Therefore we have for any $x \in [a, b]$ and any $m, n \ge N$,
 $|f_n(x) - f_m(x)| < \epsilon.$

Therefore by the Cauchy criterion, we may conclude that f_n converges uniformly on [a, b].

Define the limit function $f: [a, b] \to \mathbb{R}$ by $f(x) = \lim_{n \to \infty} f_n(x)$. Fix $x \in [a, b]$ and define two functions $\phi_n, \phi: [a, b] \setminus \{x\} \to \mathbb{R}$:

$$\phi_n(t) = \frac{f_n(t) - f_n(x)}{t - x}, \quad \phi(t) = \frac{f(t) - f(x)}{t - x}.$$

By definition of differentiation, for any n = 1, 2, 3, ... we get

$$\lim_{t\to x}\phi_n(t)=f'_n(x).$$

In the new notation, we may rewrite the inequality (which held for **all** $x, t \in [a, b]$)

$$|(f_n(x)-f_m(x))-(f_n(t)-f_m(t))|<rac{|x-t|\epsilon}{2(b-a)}$$

by dividing by |x - t|, we get

$$\left|\frac{\left(f_m(t)-f_m(x)\right)-\left(f_n(t)-f_n(x)\right)}{|x-t|}\right|=|\phi_m(t)-\phi_n(t)|<\frac{\epsilon}{2(b-a)}.$$

This establishes by the Cauchy criterion that ϕ_n converges uniformly whenever $t \in [a, b] \setminus \{x\}$.

Uniform convergence and differentiation

Since ϕ_n converges uniformly and we know that $f_n \rightrightarrows f$, we can say by the definitions of ϕ_n and ϕ that

$$\lim_{n\to\infty}\phi_n(t)=\phi(t).$$

Therefore since we also know

$$\lim_{t\to x}\phi_n(t)=f'_n(x),$$

by the limit theorem,

$$\lim_{t\to x}\phi(t)=\lim_{n\to\infty}f'_n(x).$$

So, by definition of ϕ we conclude

$$f'(x) = \lim_{n \to \infty} f'_n(x). \blacksquare$$