Homework 4 — MATH 4590 Spring 2018

Let (M,d) be a metric space and let $S \subset M$. A point $p \in M$ is called a limit of S provided that there exists a sequence (p_n) in S such that $p_n \to p$. We say that S is closed if it contains all of its limits. We say that S is open if $\forall p \in S \exists r > 0$ such that if d(p,q) < r, then $q \in S$ (in other words: you can make a small enough "ball" around p that all points in the ball are also in S).

1. Let $(M, d) = (\mathbb{R}^2, d)$, where d is the Euclidean metric

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

Is the set $\mathbb{R} = \{(x,0) : x \in \mathbb{R}\} \subset \mathbb{R}^2\}$ a closed, an open, both closed and open, or neither a closed nor an open subset of \mathbb{R}^2 ? Why or why not? (hint: the set of points a certain distance away from a point in \mathbb{R}^2 , in this metric, looks like a little disk (not including its boundary))

- 2. Let (M, d) be a metric space and let $S = \emptyset$ (i.e. the empty set). Is \emptyset an open set, a closed set, both open and closed, or neither open nor closed? Why or why not?
- 3. Let (M, d) be a metric space and let $x \in M$ be some arbitrary point. Prove that $S = \{x\}$ is a closed set.