Homework 1 — MATH 4590 Spring 2018

1. Chapter 1, # 1: Prove that for all sets A, B, C, the formula
AU(BNC)=(AuB)N(AUCQC)

is true.

Proof: Tt suffices to show that AU (BNC) C (AUB)N(AUC) and
(AUB)N(AUC) C AU(BNC). Assume that x € AU(BNC), thus either
r€Aorxe BNC. If z € A, then x € AU B and x € AU C, therefore
x € (AUB)N(AUC). Now suppose that x € BNC. Then x € B and
z € C,and so bothx € AUB and z € AUC, hence z € (AUB)N(AUC).
Therefore AU (BNC)C (AUB)N(AUCQC).

Now we show that (AU B)N(AUC) C AU (BNC). Assume that
z€(AUB)N(AUC). Thenzx € AUB and x € AUC. If € A, then
x € AU (BNC), so assume that z ¢ A.

Claim: x € BNC

Proof of claim: Suppose that x ¢ BNC. Thenz ¢ Band z ¢ C.
Since x &€ A, it follows that both x € AUB and x € AUC, a
contradiction. Therefore x € BN C.

Since x € BN C, it follows that « € AU (BN C). Therefore A(AU B) N
(AUuC) C AU (BNC). Therefore we have shown that AU (BNC) =
(AUB)N (AU C), completing the proof. B

2. Chapter 1, # 2:

(a) Prove that (A°)°¢ = A.
Proof: Let A¢ denote the complement of A in X, i.e. A°= X\ A.
We shall show that (A°)¢ C A and A C (A°)°. Let x € (A°)°. Then
r e X\ A But X\ A°= X\ (X \ A4).
Claim: X\ (X\4)=4
Proof of claim: If z € X \ (X \ A), then z is in the set of
elements that are not in X \ A. Those elements are exactly
the ones in A, by definition. Conversely, if z € A, then
z ¢ X\ A, and so z is not removed when forming X\ (X\ A),
showing that A € X\ (X \ 4). Thus X \ (X \ 4) = A.
Since x € X \ (X \ A4), we see from the claim that € A. Thus we
have shown that (A°)¢ C A.
Now let € A. Then z ¢ X \ A. Therefore z € X \ (X \ A). Since
X\ (X\A4) =X\ A° = (A°)°, we see that A C (A°)°. Therefore
(A€)¢ = A, completing the proof. B

(b) Prove deMorgan’s law: Prove

(ANB)® = A°U B (1)



and derive from it the law
(AU B)¢ = A°n B°. (2)

Solution: First let us prove (1). Let x € (AN B)°. Then z €
X\ (AN B). This means that = ¢ AN B. Without loss of generality,
assume that ¢ ¢ A. Then x € A€, and so x € A°U B°.

Now let x € A°U B¢. Then z € A° or x € B°. Without loss of
generality, asusme that © € A°. Then « ¢ A, so z € AN B. Thus
z € (AN B)°. Completing the proof. W

To derive (2) from (1), replace A with A° and B with B¢ in (1) to
get
(A°N B°)° = (A°)° U (B°)". (3)

On the right-hand-side note that by part (a), we know (A°)¢ = A
and (B°)° = B, so we get

(A°N B°)° = AU B.

Taking the complement of each side and applying part (a) to the
left-hand side yields the desired result:

A°NB° = (AU B)°.

Draw Venn diagrams to illustrate the two laws.
Solution:

Ac:

First law:

AU B:




(AU B)® = A°n B

Second law:

ANB:

(AN B)¢ = A° U B:

Generalize these laws to more than two sets.
Solution: Suppose we have three sets A, B,C and we want to look
at (AN BNC)°. Write X = BN C, and observe

(ANBNC) = (AnX)* 2 Acnxe = a4cn(BnO)e Y acnBence.

This leads us to a conjecture:
Conjecture: The following formula holds for n =1,2,3,.. .:

(A1 N AN .. NA) = ASUASU. .. UAC.
1 2 n

Proof: The case n = 1 holds trivially. The case n = 2 was proven
in part (b). The case n = 3 was proven in the beginning of part (d).
Assume the formula holds for n = N. We now prove it holds for
n=N+1:

Claim: If for all sets, A1,..., An,

(A1N...NAN)* = ATU...UAY,
then for any additional set Any1,

(AiN...NANNAn 1) = ASUL. UAS U AS .



Proof of claim: Define Ay = Ay N Axg1. Then we see
using the hypothesis of this claim that

(A1N...NAN)E = ASU...UAN" = ASU...U(ANUANL1),

and so from the n = 2 case of the conjecture (proved ear-
lier), we may conclude

(A1 N...NAN)° = ATU...UAS U A5, 1,

completing the proof of the claim.

Since this claim holds and the base cases n = 1, n = 2, and n = 3
hold, we have shown via induction that the conjecture holds. B

3. Chapter 1, # 6: Why is the square of and odd integer odd and the square
of an even integer even? What is the situation for higher powers?
Solution: Recall that any positive natural number has a unique prime
factorization n = pi'ps*...p;", where the p1,...,p; are prime numbers
with exponents ej,...,e; € N. Since 2 is prime and being even means
being divisible by 2, a number is even if and only if one of its prime
factors p1,...,p; is equal to 2.

If n is an odd integer, then when writing n = p{*ps? .. .pfl, we observe
that p; # 2 and py # 2 and ... and p; # 2 (otherwise n would be even).
Now consider the square of n:

€4

N2 2 2 N2
n® = (p'pst ... pf)" = (p)° (p52)° ... (05") = P P35 ... b}

We see that the only prime factors of n? are the same ones that are factors
of n. Since 2 was not a factor of n, it follows that 2 is not a factor of n2.

A similar argument shows that the square of an even must be even. This
same argument holds for higher powers because
L ey, eo ler Les le;

¢
n" = (pI'ps?...pi") =ptps .o

4. In this problem, there is a known subset of R called ¥ which has an upper
bound. The set C' is defined by

C = {a € Q: for some cut A|B € ¢,a € A}
and the set D is defined by
D=Q\C.

(a) Claim 1: C|D is a cut.
Solution: We must argue that

a) CUD=Q,C#0,D#0,andCND =0,



b.) if c€ C and d € D, then ¢ < d, and
c.) C contains no largest element.

By definition, C € Q and C N D = . To prove a.), it follows from
the definition of D that CUD = Q. We know that C # () and D # ()
because C' is bounded above.

To prove b.), suppose there is a ¢ € C' and a d € D with d < ¢. Let
¢ = (C1|Cy and d = D;1|Dy. Then we may conclude that D, C Cj.
But we cannot have Dy = C{, because it would follow that Dy = Cs
and hence ¢ = d which contradicts the fact that C N D = (. If
D; € C, then by the definition of C, d € C. But this cannot
happen because D = Q\ C. Hence we have shown that D; ¢ Cy and
thus it is not true that d < ¢. Therefore b.) holds.

To prove c.), suppose that C' does contain a largest element — call it

¢. Since ¢ € Q we can express it as b for p,q € Z with ¢ # 0. By the
q
definition of C, there is some cut A|B € € for which Pea.
q

Claim: A|B =¢
Proof: Since P € A, it follows that ¢ < A|B. Now we

show that A|Bq < ¢. Suppose that A|B > ¢ Then if we
write & = C|D, it follows that C' C A. But this means
there is some larger ¢ = C|D € A with C € C' C A. But
this means that ¢ € C is a larger element of C' than ¢, a
contradiction to ¢ being the largest. Therefore A|B < &
and since we proved earlier that ¢ < A|B, we may conclude
that A|B = ¢.
So we see that may write the real number ¢ as the cut

{p,oo> NQ.
q

From this we observe that ¢ € A, a contradiction. Therefore ¢ cannot
exist, i.e. C' has no largest element.

Therefore a.), b.), and c.) hold and we may conclude that C|D is a
cut.

i=A|B = <—OO,Z>QQ

5. Claim 2: C|D is an upper bound for ¥
Proof: Let E|F € €. We will show that E|F < C|D. Since E|F € ¥,
we know by the definition of C' that for all a € FE, a € C, hence E C C.
Therefore E|F < C|D. B



