
Homework 1 — MATH 4590 Spring 2018

1. Chapter 1, # 1: Prove that for all sets A,B,C, the formula

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

is true.
Proof : It suffices to show that A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C) and
(A∪B)∩(A∪C) ⊆ A∪(B∩C). Assume that x ∈ A∪(B∩C), thus either
x ∈ A or x ∈ B ∩ C. If x ∈ A, then x ∈ A ∪ B and x ∈ A ∪ C, therefore
x ∈ (A ∪ B) ∩ (A ∪ C). Now suppose that x ∈ B ∩ C. Then x ∈ B and
x ∈ C, and so both x ∈ A∪B and x ∈ A∪C, hence x ∈ (A∪B)∩ (A∪C).
Therefore A ∪ (B ∩ C) ⊆ (A ∪B) ∩ (A ∪ C).

Now we show that (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C). Assume that
x ∈ (A ∪ B) ∩ (A ∪ C). Then x ∈ A ∪ B and x ∈ A ∪ C. If x ∈ A, then
x ∈ A ∪ (B ∩ C), so assume that x 6∈ A.

Claim: x ∈ B ∩ C
Proof of claim: Suppose that x 6∈ B∩C. Then x 6∈ B and x 6∈ C.
Since x 6∈ A, it follows that both x 6∈ A ∪ B and x 6∈ A ∪ C, a
contradiction. Therefore x ∈ B ∩ C.

Since x ∈ B ∩ C, it follows that x ∈ A ∪ (B ∩ C). Therefore A(A ∪ B) ∩
(A ∪ C) ⊆ A ∪ (B ∩ C). Therefore we have shown that A ∪ (B ∩ C) =
(A ∪B) ∩ (A ∪ C), completing the proof. �

2. Chapter 1, # 2:

(a) Prove that (Ac)c = A.
Proof : Let Ac denote the complement of A in X, i.e. Ac = X \ A.
We shall show that (Ac)c ⊆ A and A ⊆ (Ac)c. Let x ∈ (Ac)c. Then
x ∈ X \Ac. But X \Ac = X \ (X \A).

Claim: X \ (X \A) = A
Proof of claim: If z ∈ X \ (X \ A), then z is in the set of
elements that are not in X \A. Those elements are exactly
the ones in A, by definition. Conversely, if z ∈ A, then
z 6∈ X\A, and so z is not removed when forming X\(X\A),
showing that A ⊂ X \ (X \A). Thus X \ (X \A) = A.

Since x ∈ X \ (X \ A), we see from the claim that x ∈ A. Thus we
have shown that (Ac)c ⊆ A.

Now let x ∈ A. Then x 6∈ X \ A. Therefore x ∈ X \ (X \ A). Since
X \ (X \ A) = X \ Ac = (Ac)c, we see that A ⊆ (Ac)c. Therefore
(Ac)c = A, completing the proof. �

(b) Prove deMorgan’s law: Prove

(A ∩B)c = Ac ∪Bc (1)
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and derive from it the law

(A ∪B)c = Ac ∩Bc. (2)

Solution: First let us prove (1). Let x ∈ (A ∩ B)c. Then x ∈
X \ (A∩B). This means that x 6∈ A∩B. Without loss of generality,
assume that x 6∈ A. Then x ∈ Ac, and so x ∈ Ac ∪Bc.

Now let x ∈ Ac ∪ Bc. Then x ∈ Ac or x ∈ Bc. Without loss of
generality, asusme that x ∈ Ac. Then x 6∈ A, so x 6∈ A ∩ B. Thus
x ∈ (A ∩B)c. Completing the proof. �

To derive (2) from (1), replace A with Ac and B with Bc in (1) to
get

(Ac ∩Bc)c = (Ac)c ∪ (Bc)c. (3)

On the right-hand-side note that by part (a), we know (Ac)c = A
and (Bc)c = B, so we get

(Ac ∩Bc)c = A ∪B.

Taking the complement of each side and applying part (a) to the
left-hand side yields the desired result:

Ac ∩Bc = (A ∪B)c.

(c) Draw Venn diagrams to illustrate the two laws.
Solution:

Ac:

A B

Bc:

A B

First law:

A ∪B:

A B
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(A ∪B)c = Ac ∩Bc:

A B

Second law:

A ∩B:

A B

(A ∩B)c = Ac ∪Bc:

A B

(d) Generalize these laws to more than two sets.
Solution: Suppose we have three sets A,B,C and we want to look
at (A ∩B ∩ C)c. Write X = B ∩ C, and observe

(A∩B∩C)c = (A∩X)c
(1)
= Ac∩Xc = Ac∩ (B∩C)c

(1)
= Ac∩Bc∩Cc.

This leads us to a conjecture:
Conjecture: The following formula holds for n = 1, 2, 3, . . .:

(A1 ∩A2 ∩ . . . ∩An)c = Ac
1 ∪Ac

2 ∪ . . . ∪Ac
n.

Proof : The case n = 1 holds trivially. The case n = 2 was proven
in part (b). The case n = 3 was proven in the beginning of part (d).
Assume the formula holds for n = N . We now prove it holds for
n = N + 1:

Claim: If for all sets, A1, . . . , AN ,

(A1 ∩ . . . ∩AN )c = Ac
1 ∪ . . . ∪Ac

N ,

then for any additional set AN+1,

(A1 ∩ . . . ∩AN ∩AN+1)c = Ac
1 ∪ . . . ∪Ac

N ∪Ac
N+1.
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Proof of claim: Define ÃN = AN ∩ AN+1. Then we see
using the hypothesis of this claim that

(A1∩. . .∩ÃN )c = Ac
1∪. . .∪ÃN

c
= Ac

1∪. . .∪(AN∪AN+1)c,

and so from the n = 2 case of the conjecture (proved ear-
lier), we may conclude

(A1 ∩ . . . ∩ ÃN )c = Ac
1 ∪ . . . ∪Ac

N ∪Ac
N+1,

completing the proof of the claim.

Since this claim holds and the base cases n = 1, n = 2, and n = 3
hold, we have shown via induction that the conjecture holds. �

3. Chapter 1, # 6: Why is the square of and odd integer odd and the square
of an even integer even? What is the situation for higher powers?
Solution: Recall that any positive natural number has a unique prime
factorization n = pe11 pe22 . . . peii , where the p1, . . . , pi are prime numbers
with exponents e1, . . . , ei ∈ N. Since 2 is prime and being even means
being divisible by 2, a number is even if and only if one of its prime
factors p1, . . . , pi is equal to 2.

If n is an odd integer, then when writing n = pe11 pe22 . . . pe
i

i , we observe
that p1 6= 2 and p2 6= 2 and . . . and pi 6= 2 (otherwise n would be even).
Now consider the square of n:

n2 = (pe11 pe22 . . . peii )
2

= (pe11 )
2

(pe22 )
2
. . . (peii )

2
= p2e11 p2e22 . . . p2eii .

We see that the only prime factors of n2 are the same ones that are factors
of n. Since 2 was not a factor of n, it follows that 2 is not a factor of n2.

A similar argument shows that the square of an even must be even. This
same argument holds for higher powers because

n` = (pe11 pe22 . . . peii )
`

= p`e11 p`e22 . . . p`eii .

4. In this problem, there is a known subset of R called C which has an upper
bound. The set C is defined by

C = {a ∈ Q : for some cut A|B ∈ C , a ∈ A}

and the set D is defined by

D = Q \ C.

(a) Claim 1: C|D is a cut.
Solution: We must argue that

a.) C ∪D = Q, C 6= ∅, D 6= ∅, and C ∩D = ∅,
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b.) if c ∈ C and d ∈ D, then c < d, and

c.) C contains no largest element.

By definition, C ⊂ Q and C ∩D = ∅. To prove a.), it follows from
the definition of D that C ∪D = Q. We know that C 6= ∅ and D 6= ∅
because C is bounded above.

To prove b.), suppose there is a c ∈ C and a d ∈ D with d ≤ c. Let
c = C1|C2 and d = D1|D2. Then we may conclude that D1 ⊆ C1.
But we cannot have D1 = C1, because it would follow that D2 = C2

and hence c = d which contradicts the fact that C ∩ D = ∅. If
D1 ( C1, then by the definition of C, d ∈ C. But this cannot
happen because D = Q\C. Hence we have shown that D1 6⊂ C1 and
thus it is not true that d ≤ c. Therefore b.) holds.

To prove c.), suppose that C does contain a largest element – call it

c̃. Since c̃ ∈ Q we can express it as
p

q
for p, q ∈ Z with q 6= 0. By the

definition of C, there is some cut A|B ∈ C for which
p

q
∈ A.

Claim: A|B = c̃

Proof : Since
p

q
∈ A, it follows that c̃ ≤ A|B. Now we

show that A|B ≤ c̃. Suppose that A|B > c̃. Then if we
write c̃ = C̃|D̃, it follows that C̃ ( A. But this means
there is some larger ĉ = Ĉ|D̂ ∈ A with C̃ ( Ĉ ⊆ A. But
this means that ĉ ∈ C is a larger element of C than c̃, a
contradiction to c̃ being the largest. Therefore A|B ≤ c̃
and since we proved earlier that c̃ ≤ A|B, we may conclude
that A|B = c̃.

So we see that may write the real number c̃ as the cut

c̃ = A|B =

(
−∞,

p

q

)
∩Q

∣∣∣∣∣
[
p

q
,∞

)
∩Q.

From this we observe that c̃ 6∈ A, a contradiction. Therefore c̃ cannot
exist, i.e. C has no largest element.

Therefore a.), b.), and c.) hold and we may conclude that C|D is a
cut. �

5. Claim 2: C|D is an upper bound for C
Proof : Let E|F ∈ C . We will show that E|F ≤ C|D. Since E|F ∈ C ,
we know by the definition of C that for all a ∈ E, a ∈ C, hence E ⊆ C.
Therefore E|F ≤ C|D. �
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