
MATH 3503 - EXAM 4 FALL 2018
SOLUTION

Friday, 16 November 2018
Instructor: Tom Cuchta

Instructions:

• Show all work, clearly and in order, if you want to get full credit. If you claim something is true
you must show work backing up your claim. I reserve the right to take off points if I cannot
see how you arrived at your answer (even if your final answer is correct).

• Justify your answers algebraically whenever possible to ensure full credit.

• Circle or otherwise indicate your final answers.

• Please keep your written answers brief; be clear and to the point.

• Good luck!

Formulas

Polar coordinates:


x = r cos(θ)

y = r sin(θ)

dA 7→ rdrdθ

Cylindrical coordinates:



x = r cos(θ)

y = r sin(θ)

z = z

dV 7→ rdrdθ

Spherical coordinates:



x = ρ sin(φ) cos(θ)

y = ρ sin(φ) sin(θ)

z = ρ cos(φ)

dV 7→ ρ2 sin(φ)dρdθdφ

Parametrizations

From point P to point Q:


~r(t) = tQ+ (1− t)P

0 ≤ t ≤ 1

Of the curve y = f(x) between x values x = a and x = b:


~r(t) = 〈t, f(t)〉

a ≤ t ≤ b
Let C be a curve parametrized by ~r(t) for a ≤ t ≤ b:

Scalar line integral (“magic formula”):

∮
C

fds =

∫ b

a

f(~r(t))‖~r′(t)‖dt

Vector field line integral (“magic formula”):

∮
C

~F · d~r =

∫ b

a

~F (~r(t)) · ~r′(t)dt
Green’s theorem: if C surrounds the region D, then

∮
C

~F · d~r =

∫∫
D

∂

∂x
− ∂P

∂y
dA



1. (12 points)

(a) (5 points) Draw the region D in the plane bounded by the circles x2 +y2 = 1 and x2 +y2 = 25.
Solution:

(b) (7 points) Compute

∫∫
D

3− x2 − y2dA, where D is the region in part (a).

Solution: This region can be described in polar coordinates as

D = {(r, θ) : 1 ≤ r ≤ 5, 0 ≤ θ ≤ 2π}.

In polar coordinates, 3− x2 − y2 = 3− (x2 + y2) = 3− r2. Therefore we have∫∫
D

3− x2 − y2dA =

∫ 2π

0

∫ 5

1

(3− r2)rdrdθ

=

∫ 2π

0

3r2

2
− r4

4

∣∣∣∣∣
r=5

r=1

dθ

=

((
75

2
− 625

4

)
−
(

3

2
− 1

4

))∫ 2π

0

1dθ

= −120(2pi)

= −240π

.

2. (14 points) Consider the region E between the surfaces z = x2 + y2 and z = 2− x2 − y2.



(a) (4 points) Find a formula for the intersection curve of these two surfaces (hint: each are “z =”,
so set them equal! ).
Solution: We have

x2 + y2 = z = 2− x2 − y2.

Therefore
2(x2 + y2) = 2,

hence
x2 + y2 = 1.

(b) (4 points) Draw a picture of the curve you found in (a) in the xy-plane.
Solution: The curve is the circle of radius 1 centered at (0, 0):

(c) (6 points) Set up but do not evaluate the triple interal

∫∫∫
E

x + y + zdV in cylindrical

coordinates.
Solution: We convert the surfaces in the problem into cylindrical coordinates: the lower surface
is z = x2 + y2 = r2 and the upper surface is z = 2− x2 − y2 = 2− r2. We “shoot the arrow” in
the z direction and compute∫∫∫

E

x+ y + zdV =

∫ 2π

0

∫ 1

0

∫ 2−r2

r2

(
r cos(θ) + r sin(θ) + z

)
rdzdrdθ
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3. (12 points) Set up but do not evaluate the following triple integral as a triple integral in spherical
coordinates: ∫ 3

0

∫ 0

−
√

9−y2

∫ √9−x2−y2

0

z dzdxdy

Solution: The surfaces: z = 0 is the xy-plane and z =
√

9− x2 − y2 is the upper half of the sphere

of radius 3 centered at (0, 0, 0). The shadow region is bounded by the surfaces x = −
√

9− y2 which
is the left half of the semicircle of radius 3 centered at (0, 0) and x = 0, which is the y-axis. The
bounds y = 0 and y = 3 restrict attention to quadrant II. The sphere implies 0 ≤ ρ ≤ 3, the quadrant

implies
π

2
≤ θ ≤ π, and since only the upper half of the sphere is being considered, 0 ≤ φ ≤ π

2
. Note

that in spherical coordinates, z = ρ cos(φ). Therefore, compute

∫ 3

0

∫ 0

−
√

9−y2

∫ √9−x2−y2

0

z dzdxdy =

∫ π
2

0

∫ π
2

0

∫ 3

0

(ρ cos(φ))ρ2 sin(φ)dρdθdφ.

4. (12 points) (a) (6 points) Draw and parametrize the curve C defined as the part of the curve
y = x3 from (0, 0) to (2, 8).
Solution:

We parametrize the curve as a function of the form y = f(x) as
~r(t) =

〈
t, t3

〉
0 ≤ t ≤ 2
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(b) (6 points) Use your answer in (a) to set up but do not evaluate the line integral

∮
C

x2 +yds.

Solution: This is a scalar line integral, so we first compute ~r ′(t) =
〈

1, 3t2
〉

and hence we see

‖~r ′(t)‖ =
√

1 + 9t4. Now we can compute∮
C

x2 + yds =

∫ 2

0

(t2 + t3)
√

1 + 9t4dt

5. (12 points) (a) (5 points) Parametrize the curve C defined as the line segement from (1, 0, 0) to
(0, 1, 1).
Solution: We parametrize this line segment as

~r(t) = t〈0, 1, 1〉+ (1− t)〈1, 0, 0〉 = 〈1− t, t, t〉

0 ≤ t ≤ 1.

(b) (7 points) Set up but do not evaluate the line integral

∮
C

〈z,−x, y〉 · d~r.

Solution: This is a vector field line integral. So compute ~r ′(t) = 〈−1, 1, 1〉. Therefore compute∮
C

〈z,−x, y〉 · d~r =

∫ 1

0

〈t, t− 1, t〉 · 〈−1, 1, 1〉dt =

∫ 1

0

−t+ (t− 1) + tdt =

∫ 1

0

t− 1dt

6. (13 points) Consider the contour C (oriented counterclockwise) which starts at (0, 0), travels along
the x-axis until it reaches (π, 0) and then goes back to (0, 0) along the curve y = sin(x).

(a) (5 points) Draw this curve.
Solution: Draw:

(b) (8 points) Use your drawing from (a) and Green’s theorem to compute∮
C

〈x2ex − y, x− ln(y)ey〉 · d~r.

Solution: In this case P = x2ex − y and Q = x − ln(y)ey. We may compute Py = −1 and
Qx = 1. The region in question is bounded between the curves y = 0 and y = sin(x) between
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x-values x = 0 and x = π. Therefore by Green’s theorem,∮
C

〈x2ex − y, x− ln(y)ey〉 · d~r Green’s theorem
=

∫ π

0

∫ sin(x)

0

Qx − Py︸ ︷︷ ︸
=1−(−1)=2

dydx

= 2

∫ π

0

sin(x)dx

= −2 cos(x)

∣∣∣∣∣
π

0

= −2 cos(π)− (−2 cos(0))

= (−2)(−1) + 2(1)

= 4.

7. (8 points) Consider the function f(x, y, z) = x2 sin(yz)− yecos(x). Use the fundamental theorem of

line integrals to calculate

∮
C

∇f · d~r when C is any path from (0, 0, 0) to (0, 2, 5).

Solution: By the fundamental theorem of line integrals,∮
C

∇f · d~r = f(0, 2, 5)− f(0, 0, 0) = (0− 2ecos(0))− (0− 0) = −2.

8. (8 points) Draw vectors at each of the four following dots determined by the vector field ~F =
〈−x+ 1,−x− y〉 (the center point is at the point (0, 0)).

Solution: First compute

~F (−1, 1) = 〈−(−1) + 1,−(−1)− 1〉 = 〈2,−2〉,
~F (−1,−1) = 〈−(−1) + 1,−(−1)− (−1)〉 = 〈2, 2〉,

~F (0, 0) = 〈0 + 1, 0〉 = 〈1, 0〉,
and

~F (1, 1) = 〈−1 + 1,−1− 1〉 = 〈0,−2〉.
Drawing these yields
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9. (9 points) Consider the vector field ~F = 〈x2y, 3x− z3, 4y2〉.

(a) (5 points) Compute curl ~F . Solution: Compute

curl〈x2y, 3x− z3, 4y2〉 = ∇× 〈x2y, 3x− z3, 4y2〉

= det


~i ~j ~k

∂

∂x

∂

∂y

∂

∂z

x2y 3x− z3 4y2


= 〈8y + 3z2, 0, 3− x2〉

(b) (4 points) Compute div ~F .
Solution: Compute

div〈x2y, 3x− z3, 4y2〉 = ∇ · 〈x2y, 3x− z3, 4y2〉

=

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· 〈x2y, 3x− z3, 4y2〉

=
∂

∂x

[
x2y
]

+
∂

∂y

[
3x− z3

]
+

∂

∂z

[
4y2
]

= 2xy + 0 + 0

= 2xy.
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