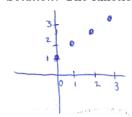
Homework 9 — MATH 2510 Spring 2018

Recall that the notation $f: A \to B$ is how you say that there is a function named "f" whose domain (i.e. set of inputs) is "A" and whose codomain (i.e. space where outputs live) is "B". Also recall that the range of a function is the set of actual outputs, i.e.

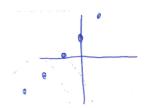
$$range(f) = \{ y \in B \colon \exists x f(x) = y \}.$$

We defined a function $f \colon X \to Y$ to be one-to-one provided that $\forall x \forall y (f(x) = f(y) \to x = y)$. We defined the cardinality (i.e. "number of elements") |A| of a set A in the following way: we say that $|X| \leq |Y|$ provided there is a one-to-one function $f \colon X \to Y$. We say that |X| = |Y| (i.e. "the cardinality of X is equal to the cardinality of Y") provided that $|X| \leq |Y|$ and $|Y| \leq |X|$. Of course if a set is finite, we simply report its size as an number; e.g. $|\{a,b,c\}| = 3$.

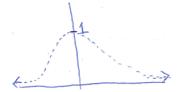
- 1. Sketch each function (to the best of your abilities). Is the function one-to-one or not?
 - a.) $\begin{cases} f\colon \mathbb{N}\to\mathbb{N}\\ f(n)=n+1\\ Solution : \text{ The function is one-to-one.} \end{cases}$



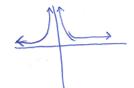
b.) $\begin{cases} f \colon \mathbb{Z} \to \mathbb{Z} \\ f(n) = n+1 \\ Solution : \text{ The function is one-to-one.} \end{cases}$



c.)
$$\begin{cases} f: \mathbb{Q} \to \mathbb{Q} \\ f(n) = \frac{1}{x^2 + 1} \\ Solution: \text{ The function is } \mathbf{not} \text{ one-to-one.} \end{cases}$$



d.)
$$\begin{cases} f \colon \mathbb{R} \setminus \{0\} \to \mathbb{R} \\ f(x) = \frac{1}{x^2} \\ Solution : \text{ The function is } \mathbf{not} \text{ one-to-one.} \end{cases}$$



e.)
$$\begin{cases} f \colon [0, \infty) \to \mathbb{R} \\ f(x) = \frac{1}{1 + |x|} \\ Solution: \text{ The function is one-to-one.} \end{cases}$$

2. Show that $|\mathbb{Z}| = |\mathbb{N}|$.

Solution: Define a function $f: \mathbb{Z} \to \mathbb{N}$ by

$$f(n) = \begin{cases} 0, & n = 0\\ 2m - 1, & n \text{ is the } m \text{th positive integer}\\ 2m, & n \text{ is the } m \text{th negative integer} \end{cases}$$

Then f(0) = 0, f(1) = 1, f(-1) = 2, f(2) = 3, f(-2) = 4, f(3) = 5,

 $f(-3) = 6 \dots$ It maps 0 to 0, it maps positive integers to odd numbers, and it maps negative integers to even numbers. This shows $|\mathbb{Z}| \leq |\mathbb{N}|$. Defining a function $g: \mathbb{N} \to \mathbb{Z}$ by g(n) = n is one-to-one, showing that $|\mathbb{N}| \leq |\mathbb{Z}|$.

Therefore $|\mathbb{Z}| \leq |\mathbb{N}|$ and $|\mathbb{N}| \leq |\mathbb{Z}|$. Thus $|\mathbb{Z}| = |\mathbb{N}|$.

3. Show that $|\mathbb{N} \times \mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$. (Recall how the "×" symbol works:

$$A \times B \times C = \{(a, b, c) \colon a \in A, b \in B, c \in C\}.$$

Solution: Define a function $f: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ by $f(a, b, c) = 2^a 3^b 5^c$. This function is one-to-one. Define a function $g: \mathbb{N} \to \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ by g(n) = (n, 0, 0). This function is one-to-one. Thus $|\mathbb{N} \times \mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$.

4. Show that $|(0,1]| = |[1,\infty)|$ (note: these are intervals on the real line). (hint: consider rational functions)

Solution: Define a function $f:(0,1] \to [1,\infty)$ by $f(x) = \frac{1}{x}$. This function is one-to-one. Define a function $g:[1,\infty) \to (0,1]$ by $g(x) = \frac{1}{x}$. (note: the functions f and g are **different functions** because they have different domains and codomains!)

5. Show that $\left|\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right| = |\mathbb{R}|$. (hint: consider inverse trigonometric functions)

Solution: The function $\tan : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ is one-to-one. The function $\arctan : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is one-to-one.

6. Find the cardinality of the set of functions $f:\{a,b\} \to \{c,d\}$ (i.e. how many such functions are there? brute force of listing all of them can get you the answer!).

Solution: List all possible functions $f: \{a, b\} \rightarrow \{c, d\}$:

- 1. f(a) = c, f(b) = d
- 2. f(a) = c, f(b) = c
- 3. f(a) = d, f(b) = d,
- 4. f(a) = d, f(b) = c.

Therefore the cardinality of the set of these functions is 4.