1. Recall the definition of the Ack function
2. Consider a function defined recursively by

$$
x(n+1)=(n+1) * x(n), \quad x(0)=3
$$

What is $x(4)$? What is $x(5)$? In general, what is the (non-recursive) formula for $x(n)$ (for $n=0,1,2,3, \ldots$)?
Consider the theory of four-point geometry, defined by the following axioms:

Axiom 1 There exist exactly four points.

Axiom 2 Each two distinct points have exactly one line that contains both of them.
Axiom 3 Each line is on exactly two points.
3. Draw a picture (i.e. "model") of four-point geometry.
4. Show that Axiom 1 of four-point geometry is independent of axioms 2 and 3 .
5. Show that Axiom 2 of four-point geometry is independent of axioms 1 and 3 .
6. Show that Axiom 3 of four-point geometry is independent of axioms 1 and 2 .
the following sequence of formulas is provided to prove that the formula $S 0 \cdot S S 0=S 0+S 0$ is a theorem of first order arithmetic

Formulas used in proof of HW10 problem 2b
$S 0 \cdot S 0=S 0$
$S 0 \cdot S S 0=(S 0 \cdot S 0)+S 0$
$S 0 \cdot S S 0=S 0+S 0$

Consider the following assignment of values for symbols:

Symbol in the theory	Assigned numerical value
S	2
0	3
.	4
$=$	5
$($	6
$)$	7
+	8

8. Find the Gödel number of the formula in each line.
9. Find the super Gödel number of the proof
