
Question from 1PM class on 28 April 2016
Problem: Find the area of a cone (not including the base) with radius r and
height h using a parametric description of the surface, where r and h are posi-
tive constants.
Solution: First let us draw the cone:

h

R

Notice that cross sections of the cone are circles (parallel to the xy-plane), so we
want to parametrize circles of some radius dependent somehow on the height.
At height z = 0 we want a circle with zero radius (i.e. a point) and at height
z = h we want height R. Thus it makes sense to write the radius of the circle

at height z to be z
R

h
(notice what happens at height z = h). We will use

cylindrical coordinates (letting u represent the cylindrical variable θ, letting v

represent the cylindrical variable z, and letting the cylindrical variable r = v
R

h
): ~r(u, v) =

〈
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〉
0 ≤ u ≤ 2π, 0 ≤ v ≤ h.

Therefore we may compute
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〉
,
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〉
,
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〉
,

and hence
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Now we may compute

SurfaceArea =

∫∫
S

1dS

=

∫ 2π
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√
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