AMPS | THARC | KE8QZC | SFW | TSW
ORCID iD icon

Back to the class
Problem A and pg.100 #3 are graded.

Problem A: Find the image of the square whose corners lie at the points $(0,0),(1,0),(0,1),(1,1)$ in the plane under the linear transformation $$\begin{array}{ll} T \colon \mathbb{R}^{2 \times 1} \rightarrow \mathbb{R}^{2 \times 1} \\ T(\vec{x})=A\vec{x}, \end{array}$$ where $A$ is the matrix $A=\begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}.$
Solution: We interpret the four corners of the square as vectors and plug them into the transformation $T$: first plug in $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and get $$\begin{array}{ll} T \left( \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{array}.$$ Now plug in $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to get $$T \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$ Now plug in $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ to get $$T \left( \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$ Finally, plug in $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ to get $$T \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 6 \\ 1 \end{bmatrix}.$$ Thus you get the following picture:

#3,pg.100: Let $A = \left[ \begin{array}{ll} 2 & -5 \\ 3 & -2 \end{array} \right]$. Compute $3I_2-A$ and $(3I_2)A$.
Solution: First we compute $$\begin{array}{ll} 3I_2-A &= \left[ \begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array} \right] - \left[ \begin{array}{ll} 2 & -5 \\ 3 & -2 \end{array} \right] \\ &= \left[ \begin{array}{ll} 1 & 5 \\ -3 & 5 \end{array} \right]. \end{array}$$ Now compute $$\begin{array}{ll} (3I_2)A &= \left[ \begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array} \right] \left[ \begin{array}{ll} 2 & -5 \\ 3 & -2 \end{array} \right] \\ &= \left[ \begin{array}{ll} 6 & -15 \\ 9 & -6 \end{array} \right] \end{array}$$