.
Back to the class
Problems #1,5 are graded.
Problem 1: Let $(\mathbb{R}^{4 \times 1},\langle \vec{x},\vec{y} \rangle)$ be an inner product space where $\langle \vec{x},\vec{y} \rangle$ denotes dot product. Show that the vectors $\vec{a}=\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ and $\vec{b}=\begin{bmatrix} -4 \\ -3 \\ 2 \\ 1 \end{bmatrix}$ are orthogonal vectors.
Solution: Compute
$$\begin{array}{ll}
\left\langle \begin{bmatrix}
1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} -4 \\ -3 \\ 2 \\ 1 \end{bmatrix} \right\rangle &= (1)(-4) + (2)(-3) + (3)(2) + (4)(1) \\
&=-4 - 6 + 6 + 4 \\
&= 0,
\end{array}$$
showing the vectors are orthogonal.
Problem 5: Consider the vector space $(\mathbb{P},\langle \cdot,\cdot \rangle)$ where the inner product is given by
$$\langle p(x),q(x) \rangle = \displaystyle\int_{-\infty}^{\infty} p(x)q(x)e^{-x^2} dx.$$
It can be shown (via methods of problem 4) that the moments in this inner product space are
$$\langle 1,1 \rangle=\sqrt{\pi},$$
$$\langle x,1 \rangle=0,$$
$$\langle x^2,1 \rangle=\dfrac{\sqrt{\pi}}{2},$$
$$\langle x^3,1 \rangle = 0,$$
$$\langle x^4,1 \rangle = \dfrac{3\sqrt{\pi}}{4},$$
$$\langle x^5,1 \rangle = 0,$$
$$\langle x^6,1 \rangle = \dfrac{15\sqrt{\pi}}{8}.$$
Use these moments and the "linear in the first argument" property of inner products (noted here) to compute $\langle 4x^2+3x+9,1\rangle$ and $\langle 32x^5-64x^3+24x,1\rangle$.
Solution: Recall that the "linear in the first argument" says that
$$\langle \alpha \vec{v} + \beta \vec{u}, \vec{w} \rangle = \alpha \langle \vec{v}, \vec{w} \rangle + \beta \langle \vec{u}, \vec{w} \rangle.$$
Hence we may compute
$$\begin{array}{ll}
\langle 4x^2+3x+9,1 \rangle &= 4 \langle x^2,1 \rangle + 3 \langle x, 1 \rangle + 9 \langle 1, 1 \rangle \\
&=4 \dfrac{\sqrt{\pi}}{2} + 0 + 9 \sqrt{\pi} \\
&=11 \sqrt{\pi}
\end{array}$$
and
$$\begin{array}{ll}
\langle 32x^5-64x^3+24x,1 \rangle &= 32 \langle x^5,1 \rangle - 64 \langle x^3,1 \rangle + 24 \langle x,1 \rangle \\
&=0 + 0 + 0 \\
&=0.
\end{array}$$