AMPS | THARC | KE8QZC | SFW | TSW
ORCID iD icon

Back to the class
Problems #11,pg.272 and #7,pg.279 are graded.

#11,pg.272: Find a basis for the eigenspace corresponding to each listed eigenvalue: $A=\begin{bmatrix} 1 & -3 \\ -4 & 5 \end{bmatrix}; \lambda=-1,7$.

Solution: Recall that given any eigenvalue $\lambda$, the eigenspace is $\mathrm{Nul}(A-\lambda I)$. First let us find the eigenspace associated with the eigenvalue $\lambda=-1$. This means we need to find a basis for $$\mathrm{Nul}(A-(-1)I) = \mathrm{Nul} \left( \begin{bmatrix} 1-(-1) & -3 \\ -4 & 5-(-1) \end{bmatrix} \right) = \mathrm{Nul} \left( \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} \right).$$ Recall that the basis of a nullspace can be easy found from a reduced echelon form. So we row reduce $\begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix}$ and find $$\begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & -\dfrac{3}{2} \\ 0 & 0 \end{bmatrix}.$$ Hence we conclude that the solution vector $\vec{x}$ to the homogeneous equation $\begin{bmatrix} 2& -3 \\ -4 & 6 \end{bmatrix} \vec{x} = \vec{0}$ is $$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \dfrac{3}{2}x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} \dfrac{3}{2} \\ 1\end{bmatrix}.$$ Hence we conclude that $$\mathrm{Nul} \left( \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} \right) = \mathrm{span} \left\{ \begin{bmatrix} \dfrac{3}{2} \\ 1 \end{bmatrix} \right\}.$$ Since the set $\left\{ \begin{bmatrix} \dfrac{3}{2} \\ 1 \end{bmatrix} \right\}$ is linearly independent, we conclude that $$\mathscr{B} = \left\{ \begin{bmatrix} \dfrac{3}{2} \\ 1 \end{bmatrix} \right\}$$ is a basis for the eigenspace associated with $\lambda=-1$.

#7,pg.279: Find the characteristic polynomial and the real eigenvalues of the matrix $\begin{bmatrix} 5 & 3 \\ -4 & 4 \end{bmatrix}$.

Solution: Recall that the characteristic polynomial is the polynomial in variable $\lambda$ given by $\mathrm{det}(A-\lambda I)$. The roots of this polynomial are the eigenvalues, i.e. we must find $\lambda$ that solves $\mathrm{det}(A-\lambda I)=0.$ So compute $$A - \lambda I = \begin{bmatrix} 5-\lambda & 3 \\ -4 & 4-\lambda \end{bmatrix},$$ so $$\begin{array}{ll} \mathrm{det} (A-\lambda I) &= (5-\lambda)(4-\lambda) - (3)(-4) \\ &=x^2-9x+32. \end{array} $$ We can compute the roots of this polynomial via the quadratic formula: $$\begin{array}{ll} x &= \dfrac{9 \pm \sqrt{(-9)^2-4(1)(32)}}{2} \\ &= \dfrac{9}{2} \pm \dfrac{\sqrt{81-128}}{2} \\ &=\dfrac{9}{2} \pm \dfrac{\sqrt{47}}{2}i. \end{array}$$ Hence there are no real eigenvalues of this matrix.