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Ring Theory

A commutative ring is an algebraic structure
consisting of a set with two operations + and ·,
satisfying the following properties:
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Ring Theory

A commutative ring is an algebraic structure
consisting of a set with two operations + and ·,
satisfying the following properties:
Both operations are associative, i.e.
(a + b) + c = a + (b + c) and (a · b) · c = a · (b · c).
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Ring Theory

A commutative ring is an algebraic structure
consisting of a set with two operations + and ·,
satisfying the following properties:
Both operations are associative, i.e.
(a + b) + c = a + (b + c) and (a · b) · c = a · (b · c).
Both operations are commutative, i.e. a + b = b + a
and a · b = b · a.
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Ring Theory

There is an element 0 such that 0 + a = a for all a.
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Ring Theory

There is an element 0 such that 0 + a = a for all a.
For every element a, there is an element b such that
a + b = 0. We denote this element by −a, and call it
the additive inverse of a.
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Ring Theory

There is an element 0 such that 0 + a = a for all a.
For every element a, there is an element b such that
a + b = 0. We denote this element by −a, and call it
the additive inverse of a.
Multiplication distributes over addition, i.e.
a · (b + c) = a · b + a · c.

The Structure of Zero-Divisors – p. 3/2



Examples of rings

For example: The integers, Z
This ring is special in that it has an element 1 such
that 1 · a = a for all a. Such a ring is called a
commutative ring with unity.
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Examples of rings

For example: The integers, Z
This ring is special in that it has an element 1 such
that 1 · a = a for all a. Such a ring is called a
commutative ring with unity.
The integers modulo n, Zn is a ring under addition
modulo n and multiplication modulo n. For
example, "clock arithmetic" where 8 o’clock plus 6
hours is 2 o’clock. "Clock arithmetic" is Z12.
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More examples of rings

R1 × R2, set of ordered pairs (r1, r2) with
componentwise operations.

The Structure of Zero-Divisors – p. 5/2



More examples of rings

R1 × R2, set of ordered pairs (r1, r2) with
componentwise operations.
Z[x], polynomials with coefficients from Z.
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More examples of rings

R1 × R2, set of ordered pairs (r1, r2) with
componentwise operations.
Z[x], polynomials with coefficients from Z.
R[[x]], power series with real coefficients.
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Ideals
An ideal of a ring is a subring such that the product
of any ring element with an element of the ideal is in
the ideal.
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Ideals
An ideal of a ring is a subring such that the product
of any ring element with an element of the ideal is in
the ideal.
A maximal ideal is an ideal that is not contained in
any other ideal besides the entire ring.
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Ideals
An ideal of a ring is a subring such that the product
of any ring element with an element of the ideal is in
the ideal.
A maximal ideal is an ideal that is not contained in
any other ideal besides the entire ring.
A local ring is a ring with exactly one maximal
ideal.
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Special ring elements

The zero-divisors of a ring are the elements z such
that z · r = 0 for some nonzero r.
For example, 0 is always a zero-divisor. In Z there
are not any other zero-divisors. In Z12, both 3 and 4
are zero-divisors, since 3 · 4 = 12 ≡ 0.
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Special ring elements

The zero-divisors of a ring are the elements z such
that z · r = 0 for some nonzero r.
For example, 0 is always a zero-divisor. In Z there
are not any other zero-divisors. In Z12, both 3 and 4
are zero-divisors, since 3 · 4 = 12 ≡ 0.
The nilpotents of a ring are the elements r such that
rn = 0 for some positive integer n.
Note that nilpotents are always zero-divisors.
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Algebraic structure of zero-divisors

Theorem: (Axtell, Stickles, Trampbachls)
Z(R) is an ideal if and only if R is local

This theorem shows that Z(R) has the nice structure of
an ideal under very restrictive circumstances.

It would be nice to have a more general invariant that
indicates the structure of zero-divisors. Luckily we have
such a thing!
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Introduction to graphs

A graph is a set of vertices and edges connecting some
of the vertices.
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Introduction to graphs

The distance between two vertices of a graph is the
number of edges in a minimal path between the
vertices. If there is no path, then the distance is∞.
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Introduction to graphs

The distance between two vertices of a graph is the
number of edges in a minimal path between the
vertices. If there is no path, then the distance is∞.
The diameter of a graph is the maximal distance
between all pairs of vertices.
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Introduction to graphs

The distance between two vertices of a graph is the
number of edges in a minimal path between the
vertices. If there is no path, then the distance is∞.
The diameter of a graph is the maximal distance
between all pairs of vertices.
A cycle is a path from a vertex to itself that does not
repeat edges.
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Introduction to graphs

The distance between two vertices of a graph is the
number of edges in a minimal path between the
vertices. If there is no path, then the distance is∞.
The diameter of a graph is the maximal distance
between all pairs of vertices.
A cycle is a path from a vertex to itself that does not
repeat edges.
The girth of a graph is the length of the smallest
cycle (ignoring loops). If there are no cycles, we say
the girth is∞.
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Zero-divisor graphs

The zero-divisor graph, Γ(R), of a commutative ring R
is the graph whose vertices are the nonzero zero-divisors
of R and two vertices are connected by an edge if and
only if their product is 0.
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Zero-divisor graphs

Theorem: (D.F. Anderson and P.S. Livingston, 1999)
(slightly improved) The zero-divisor graph of a
commutative ring is connected with diameter ≤ 3 and
girth 3, 4, or∞.

This is quite a structure! This theorem applies to any
commutative ring while the previous algebraic theorem
applied only to local rings!
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Zero-divisor graphs

Theorem: (T. Cuchta, K. Lokken, W. Young, 2008)
The following table holds true:
Factorization of n Diameter Girth

p; p is prime - -

22 0 ∞

32 1 ∞

p2; p is prime and p > 3 1 3

23, or 2p; p odd prime 2 ∞

pq; p,q, distinct odd primes 2 4

pm; p is prime,m > 2, and pm &= 8 2 3

4p; p is an odd prime 3 4

pqk; p, q distinct primes, k ∈ Z+ and pqk does 3 3

not meet any criteria listed above
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Nilradical and non-nilradical graphs

We define the nilradical graph, denoted N(R), to be
the graph whose vertices are the nonzero nilpotents
of R and two vertices are connected by an edge if
and only if their product is 0.
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Nilradical and non-nilradical graphs

We define the nilradical graph, denoted N(R), to be
the graph whose vertices are the nonzero nilpotents
of R and two vertices are connected by an edge if
and only if their product is 0.
We define the non-nilradical graph, denoted Ω(R),
to be the graph whose vertices are the non-nilpotent
zero-divisors of R and two vertices are connected by
an edge if and only if their product is 0.
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Pictures of Z18
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Figure 1: The three graphs of Z18
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Nilradical graphs are connected too!

Theorem: (A. Bishop, T. Cuchta, K. Lokken, O.
Pechenik, 2008)
N(R) is connected with diameter ≤ 2 and girth 3 or∞.

This theorem is not too surprising because it is well
known that nil(R) is an ideal of R, and thus a ring.
However, notice that the diameter and girth are more
restricted in N(R) than in Γ(R).
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More definitions
An isolated vertex is a vertex that has no incident
edges.
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More definitions
An isolated vertex is a vertex that has no incident
edges.
A graph is almost connected if there exists a path
between any two non-isolated vertices.
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The non-nilradical graph is almost
connected

Theorem: (A. Bishop, T. Cuchta, K. Lokken, O.
Pechenik, 2008)
Ω(R) is almost connected and the connected
component has diameter ≤ 3 and girth 3, 4, or∞.
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The non-nilradical graph is almost
connected

Theorem: (A. Bishop, T. Cuchta, K. Lokken, O.
Pechenik, 2008)
Ω(R) is almost connected and the connected
component has diameter ≤ 3 and girth 3, 4, or∞.

This theorem is quite surprising! The diameter and
girth restrictions on Ω(R) are the same as the
restrictions on general zero-divisor graphs!
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The non-nilradical graph is almost
connected

Theorem: (A. Bishop, T. Cuchta, K. Lokken, O.
Pechenik, 2008)
Ω(R) is almost connected and the connected
component has diameter ≤ 3 and girth 3, 4, or∞.

This theorem is quite surprising! The diameter and
girth restrictions on Ω(R) are the same as the
restrictions on general zero-divisor graphs!

Moreover, this theorem defies all intuition. We
removed the nilradical, a highly structured subring
of R, from the zero-divisors, an algebraic set with
very little general structure, and the resultant set is
still graphically structured!
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N(Zn) by diameter and girth

Theorem: (A. Bishop, T. Cuchta, K. Lokken, O.
Pechenik, 2008)
Factorization of n Diameter Girth

p1p2 . . . pm such that all pi are distinct primes - -

4k, gcd(2, k) = 1, p2 ! k, for all prime p 0 ∞
9k, gcd(3, k) = 1, p2 ! k, for all prime p 1 ∞
p2, p prime, p > 3 1 3

2p2, p prime, p > 3 1 3

p2q2, p and q prime, p &= q 1 3

p2d, gcd(p, d) = 1, p prime, p > 3, 1 3

d not divisible by any non-trivial cube

8k, gcd(8, k) = 1, p2 ! k, for all prime p 2 ∞
p!a, ! ≥ 3, p prime, p > 2 2 3

2!b, ! ≥ 3, b not a product of distinct primes 2 3The Structure of Zero-Divisors – p. 19/2



Ωc by diameter and girth

Theorem: (A. Bishop, T. Cuchta, K. Lokken, O.
Pechenik, 2008)
Factorization of n Diameter Girth
pm, where p is prime andm ∈ (Z)+ - -
2pk, where p is an odd prime and k > 1 2 ∞
pkq!, where p, q are distinct primes, k, 2 4

! ∈ Z+, and pk, q! &= 2
pe1

1 pe2
2 . . . pec

c , all pi are distinct, 3 3
ei ∈ Z+, and c ≥ 3

This is the first table we proved. Eventually, we learned a
little about Artinian rings and managed to generalize it to
all finite commutative rings!
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Ωc by diameter and girth

Theorem: (A. Bishop, T. Cuchta, K. Lokken, O.
Pechenik, 2008)
R Diameter Girth
R is local - -
R ∼= Z2 × Z2 2 ∞
R ∼= L1 × L2 2 4
R ∼= L1 × L2 × . . . × Ln, n > 2 3 3

This is the major result in the paper. This table holds true
for any Artinian ring (ring that meets the descending
chain condition on ideals) because any Artinian ring can
be broken into a finite direct product of local rings (fields
are local rings! The maximal ideal in a field is 0.)
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A Potpourri of Properties of Ω(R)

For R, a finite commutative ring with unity, Ω(R)
contains at least one isolated vertex if and only if
nil(R) &= {0} and nil(R) &= Z(R).
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A Potpourri of Properties of Ω(R)

For R, a finite commutative ring with unity, Ω(R)
contains at least one isolated vertex if and only if
nil(R) &= {0} and nil(R) &= Z(R).

Let R be a finite commutative ring with unity,
Ωc(R) ∪ {0} is multiplicatively closed, unless R is
isomorphic to the cross product of three or more
local rings, L1, L2, L3, . . . Ln, and Γ(Li) is not
complete for some i.
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A Potpourri of Properties of Ω(R)

Any finite ring R can be decomposed into a finite
direct product of local rings.
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A Potpourri of Properties of Ω(R)

Any finite ring R can be decomposed into a finite
direct product of local rings.

Let R be a non-local finite commutative ring with
unity. Then, χ(Ω(R)) = n, where n is the number of
local rings in the decomposition of R.
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