GPF Sequence Graphs

Tom Cuchta

Department of Mathematics

Ohio MAA Meeting, 2009

< A

Outline

Greatest Prime Factor

- Fundamental Theorem of Arithmetic
- Greatest Prime Factor Sequences
- Result on GPF Sequences

OF Sequence Graphs

- Graph Theory
- GPF Sequence Graphs
- Results

3 Conjectures and Empirical Evidence

Counting Connected Components

Fundamental Theorem of Arithmetic Greatest Prime Factor Sequences Result on GPF Sequences

(日) (同) (三) (三)

Fundamental Theorem of Arithmetic

- A natural number *n* is an element of the set $\mathbb{N} = \{1, 2, 3, ...\}$.
- A prime number p ∈ P is a natural number such that its factors are 1 and itself.
- Any natural number, n, has a unique prime factorization $n = p_1^{e_1} \dots p_m^{e_m}$ for some natural number m and prime numbers $p_1 \dots p_m$.

Fundamental Theorem of Arithmetic Greatest Prime Factor Sequences Result on GPF Sequences

(日) (同) (三) (三)

Fundamental Theorem of Arithmetic

- A natural number *n* is an element of the set $\mathbb{N} = \{1, 2, 3, ...\}$.
- A prime number p ∈ P is a natural number such that its factors are 1 and itself.
- Any natural number, n, has a unique prime factorization $n = p_1^{e_1} \dots p_m^{e_m}$ for some natural number m and prime numbers $p_1 \dots p_m$.

Fundamental Theorem of Arithmetic Greatest Prime Factor Sequences Result on GPF Sequences

Fundamental Theorem of Arithmetic

- A natural number *n* is an element of the set $\mathbb{N} = \{1, 2, 3, ...\}$.
- A prime number p ∈ P is a natural number such that its factors are 1 and itself.
- Any natural number, n, has a unique prime factorization $n = p_1^{e_1} \dots p_m^{e_m}$ for some natural number m and prime numbers $p_1 \dots p_m$.

Fundamental Theorem of Arithmetic Greatest Prime Factor Sequences Result on GPF Sequences

Greatest Prime Factor Function

•
$$gpf(n): \mathbb{N} - \{1\} \rightarrow \mathbb{P}$$

• To compute the value of gpf(n), first consider $n = p_1^{e_1} \dots p_m^{e_m}$

• Then,
$$gpf(n) = max\{p_1, ..., p_m\}$$
.

Fundamental Theorem of Arithmetic Greatest Prime Factor Sequences Result on GPF Sequences

Greatest Prime Factor Function

•
$$gpf(n): \mathbb{N} - \{1\} \rightarrow \mathbb{P}$$

• To compute the value of gpf(n), first consider $n = p_1^{e_1} \dots p_m^{e_m}$

• Then,
$$gpf(n) = max\{p_1, \ldots, p_m\}$$
.

Fundamental Theorem of Arithmetic Greatest Prime Factor Sequences Result on GPF Sequences

Greatest Prime Factor Function

•
$$gpf(n): \mathbb{N} - \{1\} \rightarrow \mathbb{P}$$

• To compute the value of gpf(n), first consider $n = p_1^{e_1} \dots p_m^{e_m}$

• Then,
$$gpf(n) = max\{p_1, \ldots, p_m\}$$
.

Fundamental Theorem of Arithmetic Greatest Prime Factor Sequences Result on GPF Sequences

Greatest Prime Factor Function

Tom Cuchta GPF Sequence Graphs

Fundamental Theorem of Arithmetic Greatest Prime Factor Sequences Result on GPF Sequences

Greatest Prime Factor Function

Fundamental Theorem of Arithmetic Greatest Prime Factor Sequences Result on GPF Sequences

イロト イポト イヨト イヨト

Greatest Prime Factor Sequence

- A greatest prime factor sequence is defined as $x_{n+1} = gpf(ax_n + b)$ where x_0 is prime, and $a, b \in \mathbb{N}$.
- For example, let $x_0 = 2$, a = 3, b = 1. Then $x_n = 2, 7, 11, 17, 13, 5, 2, 7, 11, 17, 13, 5, 2, ...$
- Let $x_0 = 7$, a = 5, b = 3. Then $x_n = 7, 19, 7, 19, 7, 19, 7, 19, 7, 19, ...$
- Let $x_0 = 9$, a = 2, b = 1. Then $x_n = 9, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, \dots$

Fundamental Theorem of Arithmetic Greatest Prime Factor Sequences Result on GPF Sequences

イロト イポト イヨト イヨト

Greatest Prime Factor Sequence

- A greatest prime factor sequence is defined as $x_{n+1} = gpf(ax_n + b)$ where x_0 is prime, and $a, b \in \mathbb{N}$.
- For example, let $x_0 = 2$, a = 3, b = 1. Then $x_n = 2,7,11,17,13,5,2,7,11,17,13,5,2,...$
- Let $x_0 = 7$, a = 5, b = 3. Then $x_n = 7, 19, 7, 19, 7, 19, 7, 19, 7, 19, ...$
- Let $x_0 = 9$, a = 2, b = 1. Then $x_n = 9, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, \dots$

Fundamental Theorem of Arithmetic Greatest Prime Factor Sequences Result on GPF Sequences

イロト イポト イヨト イヨト

Greatest Prime Factor Sequence

- A greatest prime factor sequence is defined as $x_{n+1} = gpf(ax_n + b)$ where x_0 is prime, and $a, b \in \mathbb{N}$.
- For example, let $x_0 = 2$, a = 3, b = 1. Then $x_n = 2,7,11,17,13,5,2,7,11,17,13,5,2,...$
- Let $x_0 = 7$, a = 5, b = 3. Then $x_n = 7, 19, 7, 19, 7, 19, 7, 19, 7, 19, ...$

• Let $x_0 = 9$, a = 2, b = 1. Then $x_n = 9, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, \dots$

Fundamental Theorem of Arithmetic Greatest Prime Factor Sequences Result on GPF Sequences

A = A A =
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Greatest Prime Factor Sequence

- A greatest prime factor sequence is defined as $x_{n+1} = gpf(ax_n + b)$ where x_0 is prime, and $a, b \in \mathbb{N}$.
- For example, let $x_0 = 2$, a = 3, b = 1. Then $x_n = 2,7,11,17,13,5,2,7,11,17,13,5,2,...$
- Let $x_0 = 7$, a = 5, b = 3. Then $x_n = 7, 19, 7, 19, 7, 19, 7, 19, 7, 19, ...$
- Let $x_0 = 9$, a = 2, b = 1. Then $x_n = 9, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, \dots$

Fundamental Theorem of Arithmetic Greatest Prime Factor Sequences Result on GPF Sequences

Greatest Prime Factor Function

gpf(3a+1) for prime a

Fundamental Theorem of Arithmetic Greatest Prime Factor Sequences Result on GPF Sequences

A Conjecture and Result on GPF Sequences

- Caragiu and Sheckelhoff conjectured that all gpf sequences are ultimately periodic.
- They showed it to be true for a particular family of functions.

Theorem

If a = 1 and $b \in \mathbb{N}$, then if x_0 is prime, $x_{n+1} = gpf(x_n + b)$ is ultimately periodic

Fundamental Theorem of Arithmetic Greatest Prime Factor Sequences Result on GPF Sequences

A Conjecture and Result on GPF Sequences

- Caragiu and Sheckelhoff conjectured that all gpf sequences are ultimately periodic.
- They showed it to be true for a particular family of functions.

If a = 1 and $b \in \mathbb{N}$, then if x_0 is prime, $x_{n+1} = gpf(x_n + b)$ is ultimately periodic

Fundamental Theorem of Arithmetic Greatest Prime Factor Sequences Result on GPF Sequences

A Conjecture and Result on GPF Sequences

- Caragiu and Sheckelhoff conjectured that all gpf sequences are ultimately periodic.
- They showed it to be true for a particular family of functions.

Theorem

If a = 1 and $b \in \mathbb{N}$, then if x_0 is prime, $x_{n+1} = gpf(x_n + b)$ is ultimately periodic

Graph Theory GPF Sequence Graphs Results

Some graph theory terms

A graph is a set, $G = \{V(G), E(G)\}$, where V(G) is a set of vertices and E(G) is a set of edges between those vertices.

A *path* in a graph is a sequence of edges, a_0, a_1, \ldots, a_n such that (a_i, a_{i+1}) is a valid edge.

A cycle in a graph is a path, a_0, \ldots, a_n such that $a_0 = a_n$.

Graph Theory GPF Sequence Graphs Results

GPF Sequence Graphs

• We want to graphically represent the sequences.

- Define Uax + b where a, b ∈ N, is the graph obtained by taking graph unions between gpf sequences of all possible initial sequences where the nodes are the prime numbers, and edges are adjacent sequence members.
- Graphs helps us to better consider the entire "universe" of all of these sequences.

Graph Theory GPF Sequence Graphs Results

- We want to graphically represent the sequences.
- Define Uax + b where $a, b \in \mathbb{N}$, is the graph obtained by taking graph unions between gpf sequences of all possible initial sequences where the nodes are the prime numbers, and edges are adjacent sequence members.
- Graphs helps us to better consider the entire "universe" of all of these sequences.

Graph Theory GPF Sequence Graphs Results

- We want to graphically represent the sequences.
- Define Uax + b where $a, b \in \mathbb{N}$, is the graph obtained by taking graph unions between gpf sequences of all possible initial sequences where the nodes are the prime numbers, and edges are adjacent sequence members.
- Graphs helps us to better consider the entire "universe" of all of these sequences.

Some Examples

 U_{3x+1}

Some Examples

 U_{3x+4}

GPF Sequence Graphs

イロト イヨト イヨト イ

Some Examples

Graph Theory GPF Sequence Graphs Results

 U_{2x+17}

2

イロト イヨト イヨト イ

Graph Theory GPF Sequence Graphs Results

Results

Theorem

For Uax + b and for any $m, n \in \mathbb{N}$, any n-cycle A and any m-cycle B, $A \cap B \neq \emptyset$ if and only if A = B.

Proof.

 (\rightarrow) Suppose that there exists an *m*-cycle, A and an *n*-cycle, B such that $A \cap B \neq \emptyset$. Then, there exists a node, $t \in A \cap B$. Since $x \in A$, we know that $gpf(at+b) \in A$ and since $x \in B$, we know that $gpf(at+b) \in B$. Thus, gpf(at+b) is also in the intersection. It follows inductively that A = B if $A \cap B \neq \emptyset$.

(日) (同) (三) (三)

Graph Theory GPF Sequence Graphs Results

Results

Theorem

For Uax + b and for any $m, n \in \mathbb{N}$, any n-cycle A and any m-cycle B, $A \cap B \neq \emptyset$ if and only if A = B.

Proof.

 (\rightarrow) Suppose that there exists an *m*-cycle, A and an *n*-cycle, B such that $A \cap B \neq \emptyset$. Then, there exists a node, $t \in A \cap B$. Since $x \in A$, we know that $gpf(at+b) \in A$ and since $x \in B$, we know that $gpf(at+b) \in B$. Thus, gpf(at+b) is also in the intersection. It follows inductively that A = B if $A \cap B \neq \emptyset$.

(日) (同) (日) (日)

Graph Theory GPF Sequence Graphs Results

Results

Theorem

For U_{ax+b} , there does not exist a path between any disjoint cycles A and B.

Proof.

Suppose an n-node path, a_1, \ldots, a_n exists from A to B such that $a_0 \in A$ and other $a_i \notin A$ and $a_n \in B$ with other $a_i \notin B$. Since a_0 attached to a_1 , $gpf(a \cdot a_1 + b) = a_0$. Then, we must have $gpf(a \cdot a_2 + b) = a_1$, and likewise $gpf(a \cdot a_i + b) = a_{i-1}$ for $i \leq 1 < n$. Consider $gpf(a \cdot a_n + b)$. To preserve the path, $gpf(a \cdot a_n + b) = a_{n-1}$, but $a_{n-1} \notin B$. Contradiction!

(日) (同) (三) (三)

Graph Theory GPF Sequence Graphs Results

Results

Theorem

For U_{ax+b} , there does not exist a path between any disjoint cycles A and B.

Proof.

Suppose an n-node path, a_1, \ldots, a_n exists from A to B such that $a_0 \in A$ and other $a_i \notin A$ and $a_n \in B$ with other $a_i \notin B$. Since a_0 attached to a_1 , $gpf(a \cdot a_1 + b) = a_0$. Then, we must have $gpf(a \cdot a_2 + b) = a_1$, and likewise $gpf(a \cdot a_i + b) = a_{i-1}$ for $i \leq 1 < n$. Consider $gpf(a \cdot a_n + b)$. To preserve the path, $gpf(a \cdot a_n + b) = a_{n-1}$, but $a_{n-1} \notin B$. Contradiction!

(日) (同) (日) (日)

Counting Connected Components

Number of Connected Components?

Conjecture: U_{ax+a} has only one connected component.

	Α	в	С	D	Е	F	G	н	Т	J	κ	L	М	Ν	0	Ρ	Q	R	S	Т	U	
1	1	1	1	1	1	2	1	1	2	1	1	1	2	3	1	2	1	3	1	1	2	
2	2	1	3	1	1	1	4	1	1	1	1	2	3	1	3	1	3	2	1	1	4	
3	2	3	1	1	4	1	3	3	1	3	2	1	1	3	1	2	4	2	2	3	1	
4	1	2	1	1	1	3	1	1	3	1	1	1	2	4	2	1	1	1	3	1	1	
5	2	4	3	4	1	4	4	2	2	1	3	2	1	3	1	1	2	1	3	1	1	
6	3	2	1	3	3	1	5	1	2	4	1	1	3	3	1	3	1	1	2	3	3	
7	2	3	3	3	2	2	1	2	4	1	2	2	3	1	5	1	4	3	3	2	1	
8	2	1	2	2	4	1	3	1	1	1	2	3	3	1	1	1	5	3	2	1	1	
9	2	2	1	3	2	3	2	3	1	4	3	1	3	2	4	5	1	1	2	1	3	
10	2	2	3	4	1	3	2	4	2	1	3	4	4	4	2	2	2	2	2	1	3	
11	2	2	2	5	2	3	2	4	3	3	1	1	4	5	5	2	5	2	2	3	4	
12	2	3	1	2	2	1	1	3	1	3	1	1	3	5	1	1	3	2	1	4	1	
13	2	2	2	3	3	3	2	2	2	4	3	2	1	4	2	1	2	3	3	5	4	
14	3	2	3	3	3	3	1	3	3	2	2	2	3	1	3	2	3	4	5	1	2	
15	4	3	2	2	1	4	4	1	3	2	3	4	6	2	1	4	2	4	4	1	4	
16	1	2	1	1	2	2	2	2	3	4	1	1	1	3	4	1	1	1	2	1	3	
17	2	3	2	2	1	1	2	2	3	2	1	2	2	3	3	3	1	3	4	3	1	
18	1	2	2	2	3	1	4	3	1	2	1	3	1	2	2	3	4	1	1	4	5	
19	3	2	3	2	4	1	2	2	3	4	3	2	3	4	3	3	3	3	1	2	3	
20	3	2	2	2	1	3	2	4	1	1	4	3	1	2	1	4	3	2	3	1	3	
21	4	3	2	2	3	3	1	2	3	3	5	3	2	2	2	3	5	2	2	4	1	

Tom Cuchta

Counting Connected Components

Connected Components

 U_{23x+23}

Counting Connected Components

Connected Components

 U_{6x+6}

Thank you!

Counting Connected Components

æ

References I

🛸 Caragiu, M. and Scheckelhoff, L. The Greatest Prime Factor and Related Sequences JP J. of Algebra, Number Theory and Appl. 6 (2006), 403 -409

🌭 Guido van Rossum.

Python Programming Language. http://python.org/.

🍖 Harris, J. M., Hirst J. L., Mossinghoff, M.J. Combinatorics and Graph Theory.

🦠 William Stein et al.

Sage Mathematics Software (Version 4.1), The Sage Development Team, 2009, http://www.sagemath.org/.