--| home | research | txt | img | code | teach | specialfunctionswiki | timescalewiki | hyperspacewiki | links |--


After choosing $x_0, p,$ and $q$, hitting submit generates the set $\{x_n \colon n=0,1,2\ldots\}$ where we define $$x_{n+1}=\mathrm{gpf}(px_n+q).$$
Numbers (comma delimited positive integers, example: 1,2,3,4,5)

Multiplier (positive integer, example: 3 in 3a+1)

Summand (positive integer, example: 1 in 3a+1)

Sort:  


Explanation
Let $\mathbb{P}=\{p_1,p_2,\ldots\}=\{2,3,5,\ldots\}$ be the set of prime numbers. Recall that by the Fundamental Theorem of Arithmetic that any positive integer $n$ can be written in the form $$n=p_1^{e_1}p_2^{e_2}\ldots p_m^{e_m}$$ where $m$ and the $e_j$'s are non-negative integers. Define the function $\mathrm{gpf} \colon \mathbb{Z}^+\rightarrow \mathbb{P}$ where $\mathbb{Z}^+$ denotes the positive integers. Let $p$ and $q$ be positive integers. Choose an initial positive integer $x_0$ and define a set recursively by $$x_{n+1}=gpf(px_n+q).$$ The "gpf-conjecture" is the statement that no matter which $p$ and which $q$ are chosen, the set $\{x_n \colon n=0,1,2,\ldots\}$ is always a finite set.